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Abstract

We present an introduction to the theory for infinite exchangeable sequences of events and of
random variables with values in a Polish Space.
This work is part of a book on ‘Bayesian theory in a completely predictive perspective’ that

the authors are writing under contract with John Wiley & Sons, Ltd.



1 Introduction

The notion of a family of exchangeable events has been introduced by the dutch mathematician
Jules Haag in 1924. However it was Bruno de Finetti who, after independently conceiving
the same notion, announced in 1928, and proved in three papers published in 1930, the first
fundamental results about sequences of exchangeable events. They include the law of large
numbers and the celebrated Representation Theorem. These results were extended in 1933 by
de Finetti to cover the case of exchangeable sequences of random variables (see also, de Finetti
(1937).) Since then, many other authors contributed to the understanding of the properties
of exchangeable families of random elements with values in abstract spaces: we only cite the
fundamental work of Hewitt and Savage (1955).

The following pages are an introduction to the probabilistic theory for infinite sequences of

exchangeable events and random variables with values in a Polish space.

2 Exchangeable events

Let (22, F, P) be a probability space; we associate to a given family (A;, As, ..., Ay) of events
in F, the class C of the 2V constituents generated by the family. That is

N
C={()4:s1,..,sx €{-1,1}}
i=1

where Aj* = A; if s;, = 1 and A = A¢ if 3; = —1. Every element of C corresponds to a

trajectory on the lattice of points

L={(,7):4,j€{0,1,..N}L—-i<j<i}.
Indeed, the constituent N}, A;* may be represented by the trajectory that starts from the
origin (0,0) and visits the points

(1,51), (2,814 52), .oy (N, ) 53). (2.1)

Viceversa, for sy, s, ..., sy € {—1, 1}, the trajectory that starts from (0,0) and visits the points

listed in (2.1) corresponds uniquely to the constituent MY, A

For instance, the constituent

AN AN A3 As () As () 4s [ A7 () As

generated by the family (A, ..., As) is represented by the trajectory appearing in Figure 1.



Figure 1: The trajectory representing A{ N ASNAsNAsNAsNAsNA7 N As.

Given (n,v) € L, let us focus on the set of trajectories that start from (0,0) and reach (n,v)
after visiting the points

13,;), (2.2)

(1,81), (2,81 + 82), ..., (m,

n
i=
where 51, ..., 8, € {—1,1} and are subject only to the constrain 3°7 , s; = v. Note that any such
trajectory has k = (n + v)/2 ascending tracts and n — k = (n — v)/2 descending tracts; clearly
k€ {0,1,...,n}. We want to assign the same probability to each of these trajectories; how can
we do that?

For n < N and k € {0,1,...,n}, let us indicate with A(n, k) the event that is true if among
the first n events of the family (A, ..., Ax), k are true and n — k are false and write P(A(n, k))
for its probability; if K = (n+wv)/2, this probability coincides with that of the set of trajectories
described in (2.2). Write 7(n, k) for the probability of each trajectory of this set, that is the
probability of the event that is true if k events with assigned indez among the first n of the
family (A, ..., Ax), say A;,..., A;,, are true and the remaining n — & are false. Then our

previous request is equivalent to the following condition:

_ P(A(n, k))

m(n, k) = . :
(+)

(2.3)



2.4 Definition. The family of events (A, ..., Ax) is said to be ezchangeable if (2.3) holds
for alln € {1,2,..,N} and k € {0, ...,n}.

Here is a momentous characterization of the condition expressed in the previous definition.

2.5 Proposition. The family of events (Ay, ..., An) is exchangeable if and only if, for all
I<n<Nandl < <ipg<-+<is <N, P(A, NAi, N -NAi,) depends on n but not on

the particular choice of indezxes iy, 1, ..., iy,

Proof. Suppose that the family (A, ..., An) is exchangeable, let 1 <n < Nand 1 <4, <
12 < -+ <1y < N, and consider the event A;, N A;, N--:NA;,. This event is true if the events
Ay, Ay, .oy A;, are true and, among the remaining N — n events of the family, k£ are true, with
k€ {0,1,...,n— N}. Then, from (2.3), it follows that
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which does not depend on the choice of 7y, 7, ..., ip.

Conversely, suppose that forall 1 <n < N and 1 <4 < i3 <--- <14, < N, the probability
P(A; N4, N---NA;,) does not depend on the particular choice of the indexes i, i, ..., 45, but
only on their number n. Fix n € {1, ..., N}, k € {0,1, ...,n}, 41, %3, ..., i, and compute

P(AilnAizﬂ"'mAikﬂAngm"'ﬂAfﬂ):
= P4, N4 N4) = X P(ANA4a N N4 NA;) +- -

k+1<j<n

o (=1 FP(AL N AN Ai); (2.8)

note that all the probabilities on the right member do not depend on the indices appearing but
only on their number. Therefore, the probability on the left member depends only on n and k,

but not on the choice of indexes %, 49, ..., i,. Define

W(n’k) =P(Ail nAizﬂ"‘ﬂAikﬂAfmn“'nAfn);

Then
P(A(n, k)) = (Z)ﬁ(n, k)

and this shows that (2.3) holds. o



When (A, ..., Ax) is exchangeable, condition (2.3) implies that for any choice of 1 < 4; <
B s By 5 N

P(A, NAu NN A4L) = P(A 42 4n) = f; (Eiﬂ;)

q=n q

P(A(N,q))-
From this in turn it follows that
P(A; ﬂAz-zﬂ---ﬂAuﬂA? ARNAE L
)P40+ N4

q

(7
(" ) f(fff)mw, ?)
e )

Eh ( b 7 q—k—J
N-n+k
=5 Gt prac, g, (29)

=
Formula (2.9) is very important since it shows that, under the assumption of exchangeability for
the family (A, ..., Ay), the probability of any sequence of events of the family can be computed
once we assign the probabilities P(A(N,q)), for ¢ =0,1,...,,N.
The notion of exchangeability can be extended to infinite sequences of events.

2.10 Definition. An infinite sequence of events (A,) is said to be exchangeable if, for all
N > 1, the family (A4, ..., Ay) 18 exchangeable.

Forz e Rand N > 1, let
ZP Nk)I[—<a:]

where, for A € F, I[A] is the indicator function of the event A. (We assume, by convention,
that the sum is 0 for z < 0.) Note that Fy is a distribution function that assigns probability
P(A(N,k)) to the value k/N, for k = 0,1,..., N. In fact, Fy is the distribution function of
the random variable Yy that is equal to k/N if among the events (Ay, ..., Ay), k are true and
N —k are false; that is, Yy is the frequency of success among the first N events of the sequence
(A,). The following Representation Theorem, due to de Finetti (1933c), is our first fundamental

result for infinite exchangeable sequences of events.

2.11 Theorem. An infinite sequence of events (A,) ts ezchangeable if and only if there

ezists a distribution F' on [0, 1] such that

w(n, k) = | L9k (1 — 0)"*dF(9) (2.12)

4



forn=12,..andk=0,1,...n
Moreover, F 1is the weak limit of the sequence of distribution functions (Fy).

Proof. It is almost trivial to check that the sequence (A,) is exchangeable when (2.12) holds.
To prove the converse, let us assume that (A,) is exchangeable.
Because of (2.9),for I1<n< Nandk=0,..,n,

9g—1)---(g—k+1)
= NN-1)---(N—n+1)
N-n+k
y<bs—x—
NO(NO —1)--+(Nf — k +1)
"NN-1)--(N—n+1)

(N=q)(N-g-1)---(N-g—(n—k—1))P(AN,q))

N1 -0)(N1—8)—1)--- (N1 —8) — (n— k — 1))dEx(9).

Now observe that the integrand above converges uniformly in 8 to
I0 <6 <1)65(1 —g)n*
when N grows to infinity. Therefore, for any € > 0, there is N = N(¢) such that,
/ L65(1 — )" *dFN(6) — ¢ < m(n, k) < / COr(1 — 6)"HdEy(9) + €. (2.13)

It follows from Helly’s Selection Theorem (see, for instance, Ash (1972), Theorem 8.2.1), that
there exists a non decreasing, right continuous function F' and a subsequence (F; n;) of (Fy)
such that

Jim Fy, (z j =Flz)

J—POO
at every continuity point z of F. Moreover, F' is a distribution function since the support of
Fy, is contained in [0, 1] for every N; and
1
: ki1 _ p\n—k _ A\n—k
Jim [6+(1 - 6y (6) = f E(1 - 0" kdF(9).

This fact, together with (2.13), implies that

1

m(n, k) = / 6% (1 — )"*dF(9).
0

This concludes the proof of the first part of the theorem.
For the second part, let = € [0,1] be a continuity point for F and note that for N > 1,

=ép< (VI <] = [/ %( ) — 0)"*dF(6).



However, the law of large numbers for independent and identically distributed Bernoulli random
variables, guarantees that for § € [0,1] — {z}
[Na]

i 5 (f)aku _ GV = [[6 < a).

N—oo E—0

Hence, by Dominated Convergence Theorem,
1
 Jim Fu(e) = /ﬂ 1[6 < z)dF () = F(x).
This shows that (Fx) weakly converges to F' and concludes the proof of the theorem. o

Given an exchangeable infinite sequence of events (4,), let us indicate with X; the indicator
function of the event A;, for ¢ = 1,2, .... Then, an equivalent way to express the representation

(2.12) is the following:
1 . %,
P{X) = &, ey Xp = ) = f A% (1 — B)" L S F(f) (2.14)
0
forn > 1 and 21, ..., z, € {0,1}. Moreover, being Yy = N3N X; for N =1,2,..., it is

F(z) = lim P(%ﬁ;)ﬁ < ) (2.15)

N—oo

at any continuity point z of F.

2.16 Example. Let (X,) be the sequence of indicators of the events of an infinite exchange-
able sequence (A,) of elements of F. Forall N > 1and ¢ =0, ..., V, set

1
P(X1+X2+---+XN=£])=P(A(N,Q))=N—+1-

We want to compute the probability distribution of the random vector (X, Xs,..., X,), for
=128
For N > 1, the characteristic function of Sy = E?;l X; is

y N o
o7 Theo exp(itk) = 75 expgfé(i;i)l) L fort#0,

1 fort = 0.

¢SN (t) == {

Therefore the characteristic function of N=1Sy is

1 exp(itfF)—-1
bio ()={ ¥ elhr ort#D
NN 1 fort =0.

Hence

exp(t)-l g ¢ #0
it ?

1 fort=0.

N—ooo

lim s, (t) = {



The right member of the previous equality determines the characteristic function of the uniform

distribution; therefore Levy’s Continuity Theorem and Theorem 2.11 imply that
. 1
Alrl_IgoP(ﬁSN £ ) =8= F(0)
at every 6 € [0,1], and thus
1 n n
PX,=121,.,Xp=1%,) = f Y %i(1 - 9)”_E=’=1 Tidg
0

forn>1and 1, ...,z, € {0,1}. o

Equation (2.15) shows that the sample mean of the indicators of an infinite exchangeable

sequence of events converges in distribution. In fact, a stronger convergence holds.

2.17 Theorem. Let (X,) be the sequence of indicators of the events of an infinite ez-

changeable sequence. Then
1N
Yn==)>) X;
N N ; i
converges almost surely to a random variable © as N grows to infinity.
Proof. We will show that
. _ S 2 = 0
Al,l_{nooP(ig Ynik—Yn| 2 €) =0

indeed, this condition implies the existence of a random variable © such that limy_,., Yy = ©
on a set of probability one.
Let us consider the subsequence (Yyz). Given € > 0 and an integer ¢, whenever

[Yivtry2 — Yinggp| < -26'
for k=0,1,...,q, then
Yy = Yaeo| < |Yivarye — Yivage| + [Yivine — Yao| < €
for k =0,1,...,q. Therefore

€
P(sup [Yinike —Ywe|2€) < P(sup |Yinire = Vinvgge| > 2)
0<k<g 0<k<g 2

q
= P(U I¥iveme — Yivsgr| = 2)
k=0

q
< Y P([Yinvgrp — Yiniqp| 2 5)
k=0
d 5
< E_ng(ly(NHc)? — Yivigel?) (2.18)



where the last inequality follows from that due to Markov. Now, for m > n, compute
E([Ym - Yal") =

1 & I 2 a

“Z&——Z&H

Y m—mn) ", X;
[( +1 ( ) 1 )2}

mmn
n m
=22 ZX—an nY Xi Y X;+(m- n)ZX
men el i=1  j=n+l =
men i=n+41 n+1<iZi<m 2:1 j=n+1
Hm— PSR+ =) Y XX
=4 1<izj<n
= m;l 2[”2(m - n)P(Xl = 1) +ﬂ2(m = n)(m - — 1)P(X1 = 1,8 = 1)
T

—2n*(m —n)?P(X; =1, X3 =1) + (m — n)*nP(X, = 1) + (m — n)*n(n — 1)P(X; = 1, X, = 1)]
(X1 =1)—-P(X,=1,X;, =1)]

%[p(}{l =1)— P(X;=1,X, =1)].

[A

The next to the last equality holds because the variables X; are indicators of exchangeable

events. Therefore (2.18) becomes

4 3 1
- >€) < =) ——wmPXi=1)-PX1=1,X,=1
Plge,Mowr =Tl 29 £ G2 e T - PR =G =0

€ k=0

4 |
< f—Z[P(Xlzl)—P(Xl-—-l,Xz:l) 2—2
=N

Since the previous inequality is true for any g, it implies that

: . 4 @1
Iggrcl)oP(SI;plY{mk)z — Y| 2 €) < Jim S[P(X1=1) - P(X1=1,Xz = 1)] j:NJ_2 =0.
Therefore there is a random variable © such that
P(j\}i_IgoYN2 = O = I, (2.19)

For all N > 1, let k = k(N) be integer and such that ¥* < N < (k +1)2. Then

1 N 1 ¥
— = e : X,
V=Yl = |52 Xi- X

Ry 5 -NTE X
Nk?
(¥ — k2 T8 X— B o X
NEk2?




. W= X+ BTN, X
= Nk2

2k2(N — k?)
< — < —
= Nk? N Fk+D).

Therefore 5
Yy — O] < |¥n — Viz| + [Vie — O] < |Yie — O + F(Qk L)

from this and (2.19) it follows that

P{ lim ¥ =8] =1

N—=oo

We are finally ready to prove a different version of the Representation Theorem.

2.20 Theorem. Let (X,) be the sequence of indicators of the events of an infinite ezchange-
able sequence. Then there is a random variable © € [0,1] such that, conditionally on ©, the
random variables X1, Xa, ..., Xn, ... are independent and identically distributed Bernoulli(©).
Moreover © is the almost sure limit of the sequence (n™* 3.1, X;) : hence its distribution is

uniquely determined by the sequence (X,,).

Proof. Let © be the almost sure limit of the sequence (Yy) and F be its distribution function.
It is enough to show that, for alln > 1, z4,...,z, € {0,1} and ¢ € [0, 1],

t n n
P(X1 = By ooy = T, O L t) = / 921':1 a:.-(l _ g)mZ.—:, IidF(O).
0
For N > n, let us compute
P(Xl = Ty, '“7Xn = Tnp, YN < t)

=P(Xl=$l,. —IR,ZX<N1J—Z$

i=n+1

_ Z (N ”)/ Lim %79(1 — GYN-TLi =] [g < Nt — ixi]dF(ﬁ)

= fo 2= % (1 — )" Loimt { 5;: (N ; ”’) 09(1 — G)N""9I[q < Nt — iz,—}} dF ()

The second equality is true because of exchangeability and (2.14). However,
n

lim S~ (N q‘ '”) 09(1 - 0)""~91[q < Nt =3 ] = I[8 < 4

N—co =0 i1
because of the strong law of large numbers for sequences of independent and identically dis-

tributed Bernoulli random variables. Therefore,

P(Xlzfl?l,...,Xn=$n,@St) = lim P(Xl—.’f]_, XﬂZIR,YNSt)

N—oco

N -/0 625 % (1 — O)"~ L % dF (6);



note that the first equality holds because © is the limit of the sequence (Yy) almost surely. ©

2.21 Remark. A different approach for proving the previous theorem considers the char-
acteristic function of the vector (X, ..., Xn, ©), for n > 1; let it be ¢x, ... x,,0. Indeed, by com-
puting ¢x,,.. x.,0 as the limit of the sequence of characteristic functions (¢X1,..., KNI Xt-)

for N going to infinity, one obtains

D1, Xn,0(E1y ey B, 0) = /01 exp(i6v) ﬁ[l — v + v exp(it;)]|dF (v)

=i

for all (ti,...,%,,0) € R this shows that, conditionally on ©, the random variables of the
sequence (X,) are independent and identically distributed Benoulli(©).
This approach is often fruitful for characterizing the distribution F'; we will follow it in

Example 4.15. ¢

2.22 Example. Pélya urn. Consider an urn initially containing b, > 0 black balls and
wg > 0 white balls. At timen =1,2,3, ..., a ball is sampled from the urn and replaced into it
along with m > 0 balls of the same color. This generates an infinite sequence (X,,) of Bernoulli
random variables, where X,, is 1 or 0 according to the color black or white respectively of the
ball extracted from the urn at time n.

The sequence (X,,) is exchangeable. In fact, let n > 1,0 < k < n and 1, ..., 4, such that
i; € {0,1} and 37, 3; = k. Then

1525 (Bo + jm) - IT5=¢ (wo + jm)
20 (bo + wo + jm)

[(% 4+ o) [(futk)p(watn=k)

I(k)r(w) (2 +%4n)

= /01 gk (1 - e)n—k[%i%eiﬁ—l(l —6)=1dd. (2.23)

m m

P(Xl = ils "'5Xn = Zn)

This representation and Theorem 2.11 show that the sequence is exchangeable. Moreover,
together with Theorem 2.20, (2.23) shows that, if © € [0,1] is the almost sure limit of the

sequence (n~' ", X;), then © has distribution Beta with parameters 2 and 0.

3 Mixtures of i.i.d. random variables and exchangeabil-
ity
There are many different approaches one can follow in order to introduce the notions of mixture

of sequences of i.i.d random variables and that of exchangeability.
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A very general approach begins by considering a metric space X, separable and complete,
endowed with its Borel o-field X. We write P for the class of all probability measures defined
on (X, X) and we endow P with the o-field P generated by the topology of weak convergence,
that is the smallest o-field according to which are measurable all mappings p4 : P — [0, 1],
defined for all A € X and p € P by

pa(p) = p(4).

Next, we introduce the product space (X*, X*) where X* indicates the set of all infinite
sequences = = (1, Ta, .. ) of elements of X whereas X'* is the o-field generated by the subsets
of X* of the type

AlX"'XAnXXDD-:{.'EGXOO:.’E}_EAl,...,mnEAH}

withn > 1and 4,,..., 4, € X. It is a standard result of measure theory (Ash (1972), Corollary
2.7.3) that, for all p € P, there exists a unique probability p® on (X*°, X*), called the product

probability measure, such that

poo(A]_ X oo X An X Xoo) == HP(Az)

i=1

foralln>1and A;,...,A, € X.
Finally, we consider the product space (X x P, ¥>* x P) where

X*xP={(z,p) :z € X*®,peP}

while > x P is the smallest o-field containing the family of measurable rectangles {4 x B :
A€ X* BeP}.

Any probability distribution v defined on (P, P), induces a special probability measure =
on (X® x P, X x P) through the relation

n(0) = [ p™({z € X (a,p) € C})u(dp) (1)

that is assumed to hold for all C' € X* x P. Note that, when C' = (4; x - -- x A, x X*®) x B,
withn>1, 4, € X fori=1,...,nand B € P, then

(€)= [, Il taotc)

3.2 Lemma. 7 18 a probability measure on (X x P, X™ x P).
Proof. First observe that
7(X® x P) = / PP (X®)w(dp) = 1.
P

: 06



Now let C}, C; be two disjoint sets in A’ x P; then
7(Cy U Cs)
= [Pz € X*: (z,9) € CLUC2))v(dp)
= [ 7z e X*: (z,p) € i} Ufz € X*: (,p) € Cu})w(dp)
= [ p™({z € X=: (3,p) € Ci))w(dp) + [ F™({z € X : (z,) € Ca})u(dp)
= 1(Cy) +7(GCy)
where the third equality follows from the fact that the sets
{z € X*:(z,p) € Ci} and {z € X®: (z,p) € Cs}

are disjoint. This proves that 7 is finitely additive.
In order to prove that m is countably additive, let C|,Cs,...,C,,... € X*® X P be an
infinite sequence of sets decreasing to the empty set; note that, given any p € P, the sets

{zeX*®:(z,p) €Cr} € X®, n=12,...,
decrease to the empty set when n grows to infinity. Then

lim 7(Cy)

n—o0
= lim [ p™({z € X : (z,p) € Cu})v(dp)
= [ lim p*({z € X : (a,p) € Cu})(dp) = 0
where the next to the last equality holds because of Dominated Convergence Theorem.
Hence 7 is a probability on (X*® x P, X* x P). o

Since 7 is a probability measure on the product space (X* x P, X x P), it induces two
probability measures on the spaces (X, X*°) and (P, P) respectively. In fact, for all B € P,

7(X* x B) = v(B).
Analogously, for all A € X*°, we set
r(4) =m(Ax P) = [ p=(A)w(dp); (33)

7 is a probability measure on the space (X, ).
Consider now a probability space (2, F, P) and a sequence (X,) of random variables de-
fined on € and with values in X. The sequence (X,) induces a probability distribution 7’ on

(X, X*); in fact, 7’ is uniquely determined by
T,(Al X Ay X+ X Ay XXOO)=P[X1 EAl,"',Xﬂ EATJ

12



forn > 1 and A4,..., A, € X. The probability distribution 7’ is called the law of the sequence
(Xn). At this point it is important to notice that, in our treatment of exchangeability the space
(€2, F) will not play any role; indee once the law 7’ of (X,,) is defined on the space (X*, X*),

we can assume that, for n > 1, the random variable X, is defined as
Xn: (X*=,X%) = (X, )

with X, (z) = 2, for all z = (z,2,,...) € X*®. That is, without loss of generality, we may
assume that (Q, F) coincides with (X, X*) and P with 7.

When the law of (X,,) is the 7 represented in (3.3), we will say that it is a mixture of laws of
sequences of independent random variables with identical probability distribution. Note that
if v concentrates all its mass on the probability distribution py € P, then (X,,) is an infinite
sequence of i.i.d. random variables with distribution equal to py.

For o = (01,09, ...) a finite permutation of the integers, set (¢(X,)) = (X,,, Xy, -..)-

3.4 Proposition. Assume that the law of the sequence (Xy) is the T represented in (3.8).
Then, for any finite permutation o of the integers, the laws of (X,) and of (0(Xy,)) are the

same.
Proof. For all A € X, let
o7 (A4) = {(z1, 22, ...) € X® : (Tgy, Ty, ) € A}

and

7o(A) = (07 (4)).

Clearly 7, is the law of (o(Xy)).
For all p € P, p*(A) = p®(0~!(A)) since p™ is the law of an i.i.d. sequence of random

variables with values in X and common distribution p. Therefore

4) = [ p*( " (A)vdp) = [ 5™ (4)v(dp) = 7(A).

<

3.5 Definition. A sequence of random variables (X,,) is ezchangeable if, for any finite

permutation o of the integers, it has the same law as that of the sequence (o(X,)).

Proposition 3.4 shows that when the law of (X,,) is a 7 with representation (3.3), the se-
quence (X},) is exchangeable. Before we proceed any further, let us observe that two probability
distributions are connected with any such sequence (X,); 7 and the law p™ appearing in the
representation (3.3). While 7 shows some sort of dependence among the random variables of the

13



sequence (X,,), p> assumes that they are independent and identically distributed with common
probability distribution p. This assumption is in actual fact not observable, but for situations
where one could imagine that p would be known if the entire population were observed (for
instance, through a census); hence the difficulty of eliciting a probability distribution v through
which p € P is selected. On the contrary, the assumption of exchangeability concerning the law
T attains to observable facts for which it is always possible, at least theoretically, to postulate
different forms of dependence.

In the next section we will obtain the most important result concerning infinite exchangeable
sequences of random variables, namely de Finetti’s representation theorem; for the moment,
let us notice a few elementary properties that follow directly from the assumption of exchange-
ability.

It is immediate to check that the definition of exchangeability implies that all the variables
of the sequence X, have the same marginal distributions; that is, the probability distributions
of X; and X; are the same for all 7, 7 > 1. Analogously, for n > 1, all finite vectors (X;,, ..., X; ),
11, ..., in being different integers, have the same probability distributions.

For n > 1, let ¢x,,.. x, be the characteristic function of the random vector (X, ..., X,).

3.6 Proposition. The infinite sequence (X,,) is exchangeable if and only if, for allmn > 1

and every permutation (o1, ...,0,) of the integers (1,...,n),

qu;,...,Xn (tla ey tn) = ¢X1,.-.,Xn(tcrn Tty tcrn): (3'7)
for ti,...,tn € R.

Proof. Assume first that (X,,) is exchangeable and let n > 1 and (03, ...,0,) be a permutation
of (1,...,n); indicate with (o7',...,0;') the inverse of (01, ...,0,) that is another permutation

of (1,...,n). Then, for all ty,...,t, € R,
Xy, Xn(t1y ntn) = ¢Xa_1,...,Xa_1(tl:---:tn)
1 n

= Flexp(i ki th0;1)}

= Elexp(i ) t5, X))
k=1
= ¢X1,...,Xn(to'1:"':ta'n);

the first equality holds since (X3, ..., Xp) and (X oty o X »-1) have the same distribution because
(X,) is exchangeable.

Along analogous computations one shows that if (3.7) holds, then for all n and all permu-
tations (o7, ...,00) of (1,...,n), the characteristic function of (Xy, ..., X,,) and (X,,, ..., X,, ) are
the same. This, easily implies that the sequence (X,) is exchangeable. o
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The following result shows that the assumption of exchangeability for the sequence (X,)
implies that the correlation between couples of random variables extracted from the sequence
is always nonnegative. Let us indicate with p(X;, X;) the correlation between the random
variables X; and Xj.

3.8 Proposition. If the infinite sequence (X,) is exchangeable,
p=p(Xi X;) 20
for all integers i, j.

Proof. For all 4, j, p(X;, X;) is constant since all vectors (Xj, X;) have the same distribution.
Let us indicate with 0® = Var(X;) the variance of the random variable X;; this is also the

variance of the variable X;, for i = 1,2, ..., since (X,) is exchangeable. For n > 1, compute

Var(D_X;) =) Var(X;)+ > Cov(X;,X;) =no?+n(n— 1)ps®.
i=1 i=1 1<i#j<n
Therefore, for alln > 1, "
- L
p= n—1
and thus p > 0. o

3.9 Example. Let p € [0,1], and (Y;) be a sequence of independent and identically dis-

tributed random variables. For n > 1, set

Xn =Yy +aY,

with a = 4/p/(1 — p). Then (X,,) is exchangeable and

a2

a?+1

4 de Finetti’s Representation Theorem

A general formulation of the famous de Finetti’s representation theorem states that:

The law of an infinite exchangeable sequence of random variables is a mixture of

laws of i.i.d. sequences.

15



Many different approaches are known in the literature for proving the theorem. We will follow
one based on the law of large numbers for exchangeable sequences.

QOur treatment of de Finetti’s theorem will stress the fact that the result regards the law of
an infinite sequence of random variables, and not the abstract space (2, F) where the variables
are defined. Indeed, without loss of generality we endow the the product space (X, X'*°) with

a probability distribution 7 and we consider the sequence of random variables
X 1 (X2X%) = (X, X)

defined, for n > 1 and & = (21, 22,...) € X*® by X,(z) = z,. Hence the law of the inifinite

sequence (X,) is 7.

4.1 Definition. A Borel-measurable, real function f defined on (X°°, X*°) is said to be
n-symmetric if

f(xlsx% -'-,zn:$n+1'") = f(xcrnmcrz? v Loy y Tntls )

for all (z1,z2,...) € X*®° and all permutations (01, ...,0,) of (1,...,n).
For instance, if X = R and, for all (z, z,...) € R,
flz1,29,...) = (21 + T2 + Z3) exp(—T1Z2Z3 + T4 + T5),

then f is 3-symmetric but not 4-symmetric.
Trivially, if f is n-symmetric then it is m-symmetric for all m < n. Therefore if ¥, is the

sigma-field generated by all real valued, n-symmetric functions defined on (X*, X*), then
XA® =102 D ,D%p11 D+--.
Set By =% B

4.2 Theorem. Let (X,) be exchangeable. Then, for any Borel-measurable, real valued
function ¢ defined on (X, X) and such that E[|¢(X1)|] < oo, there exists a real valued random
variable Y defined on (X, X*) such that

s L5 o) =

n—eo n, =1
with probability one.
Proof. Let n > 1 and f be an n-symmetric function defined on (X*°, X*). Fori € {1, ...,n},

E[é(Xl)f(Xl, Xg, ---)Xn: )] — E[{}ﬁ(Xl)f(X“ Xz, ...,Xz‘_]_,Xl, X1'+1, ...,Xn, )]
== E[(:b(Xi)f(Xlr X?: weiy Xi—la Xi; Xi+1, vary Xn,, )],
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the first equality is true because f is n-symmetric, the second because the sequence (X,) is
exchangeable. Therefore

n

B 30 6060 (X1, Xy s Xy )]

1 n
= ;1- Z E[é(Xz)f(Xlﬁ X27 ey Xn: "')] = E[¢(X1)f(Xla X2a swey Xﬂ.: )] (43)
=1
for all n-symmetric f defined on (X, X*). Since ; ¥7; #(X;) is n-symmetric, (4.3) shows
that 5
B9(X)) 5] = - 3 6(X).
i=1

Now consider the sequence of random variables
= E[¢(X1)|Z,],

for n =1,2,...; (Z,) is a reverse martingale with repect to the filtration (X,). Therefore, on a

set of probability one,

(cfr. Ash (1972), Corollary 7.4.4). Thus,
DL b Z a3
with probability one if Y is a version of E[¢(X;)|Ew)- o

The result reached in the previous theorem could be stated in a different way. In fact, let
T be the tail sigma-field of the sequence (X,). That is

T =) o(Xn, Xns1, ).
n=1
Then it is not difficult to show that
Tc)Z =2
n=1

Therefore, for every real valued, Borel measurable function ¢ defined on X,

E[¢(X1)|T] = E[E[$(X1)|E]|T] = E[lim — Z¢ )|T] = lim — Z¢

n—+oo n n—co n

on a set of probability one, where the last equality holds because lim,_, %Z?:l ¢(X;) is T-

measurable. Hence

B[$(X1)|Zee] = Jim Z¢ = Bl¢(X,)|T]

17



with probability one. Note that for A € X and ¢ the indicator function of A,

lim — Z¢ = lim — Zax = E[I[X; € A||T] = 7[X1 € A|T]

n—oo n n—00 n

where, for y € X, 4, is the point mass at y and, given Xi,..., X5, %E;;l 0x, is the empirical
probability distribution on (X, X’) that assigns mass 1/n to each of the observed X;’s.

Since X is metric, separable and complete, there exists p; : X*° x & — [0,1] a regular
version of the conditional probability distribution of X; given 7. That is, for A € A and
o= (Zi, %, . ) EX,

pi(z, A) = 71X € A[T|(z);
moreover, for all A € X, p(-, A) is T-measurable whereas p,(z, -) is a probability measure on
X, for all z € X*=.

4.4 Theorem. Let (X,) be exchangeable. Then, for z = (z1,%s,...) belonging to a set
of probability one, the sequence of probability distributions (£ =, 0x,)) weakly converges to

Y41 (ﬁﬂ )

Proof. Since X is metric, separable and complete, there exists a sequence (gi) of real
valued, uniformly continuous and bounded functions defined on X such that a sequence (uy,)
of probability measures on (X, X') weakly converges to a probability measure p if and only if

lim f GkQptn = f grdp
X X

n—oo

for k=1,2,.... ( For a proof of this fact, see Parthasarathy (1967).)
Forn=1,2,.., 2 = (z1,Zs,...) € X, and A € X, let

= Oxy(z)(4).

1
L)

pin (2, A) =

Fix k; then it follows from the previous theorem that there exists a Gy € A'* such that
7(Gg) =1 and

lim | 9x(y)n(z, dy) = lim ~ ng = Elgr(X1)[T](z) = /ng(y)pl(zady)

n—00 n—co rn,

for z = (1,22, ...) € Gy.
Let G =N3>, Gk. Then 7(G) =1 and
lim [ ge@)in(z dy) = [ 9 @)ps (@, dy)

n—oo JX

for € G and &k =1,2,.. o
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We now come to the representation for the finite marginal distributions of an exchangeable

infinite sequence (X,); that is, a representation of
T[XI € Al: ...,Xk € Ak]

for k > 1 and A,, ..., Ay € X. We begin by considering the case where A, ..., A; are elements

of a finite measurable partition of X.
Let thus {B, ..., Bry1} be a finite measurable partition of X. That is:

(1) BuswsyBrnyt € &;
(ii) U?:ll B; =X,
(iii) B;NB;=0fors,j=1,...,n+1,i# ]

For N > 1 and Ny,...,N, 2 0, let An(Ny,..., Ny) € X* be the event that is true if, among
the first N random variables Xj,..., Xy, N; belong to Bj,...,N, belong to B, and N,,, =
N -3 | N; belong to By, ;. Let BN(Nl, <oy V) € X Dbe the event that is true if N, assigned
random variables among Xy, ..., Xy belong to By, N, assigned random variables belong to B,
...y Npy1 assigned random variables belong to Bnii. Then, as in the case for exchangeable

sequences of events,

T(An(Nyy .o, Np)) = (Nl N:\T--

Moreover, for Ll <r < Nandr, >0,..7m, >0,

NH>T(BN(N1, o N)).

(o )
)]: a1 1N9n ™
Koo

forg1 > r1,...,gn > mnoand 37 (¢ — ;) < N — r. Therefore

T[BT(TI: ey Tn)lAN(QI’ vy ln

LB T )) = > (qrm+jrﬂ)'r(AN(fh: s qn))- (4.5)

q1 27'17"'7Qﬂ2rnaz?=l(q5 —T{)SN—T‘ (QI tgn

Let now Fy be the probability distribution function, with support on the simplex

S‘n = {(919 "'aen) : 91 ks 01 "':911 2 O:Z 91: < ]-}:
i=1
that assigns mass 7(An(g1,...,qn)) to the point (¢1/N,...,qn/N), for qi,...,q, non negative
integers and such that 3" , ¢; < N. In fact, Fy is the probability distribution of the random

vector

(37 36580, 32 (B0
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We can then rewrite (4.5) as

T(B,.(rl,...,'rn))=[g 1[(61, ., 6) € G fw (61, ooy 0) Fv(dbs, ..., d6,)

where ] n
Gy ={(61,6n) € Sn i 71 < Nby,.oyra < NOL S0 < 1 “ET:IT}
i=1
and
f (9 0 ) — N""[H?:I 91’(91'— %)(91— D‘}G—l)][(l— ;”___lgi)...(l_ ?:191‘_ %&L’l)]
N\V1l,---,Yn N(N_l)‘(N—-T-I-l) :

for (6y,...,6,) € Sy.
Notice that
lim I[(gl, ) (= GN} = I[(Gl, ---,gn) = Sn]

N—co
and .
dim. Iy, ..., 0,) = 67652 - - 67 (1 — Z 0;) iz

uniformly in (64, ...,8,) € S,. Moreover, because of Theorem 4.4, the probability distribution

Fy weakly converges to the distribution F' of the random vector

(pl('} Bl)7 "':pl(': Bﬂ))

on a set of probability one. Then, arguing as in the proof of Theorem 2.11,

TB Py swestn]) =
= Jm [ I{(01,....60) € GhlIn(Or, . 0) F (s, ., )

_f Origg -0 (1 =3 6,) i F(df, ..., dO)

i=1

= E[p7 (-, B)p}*(-, Ba) -+ - p}* (-, Bp)[1 — ;pl(" Bj)]r—zg;l T

= [ 2, B (s, Ba) -5 (5, B[ = Yo pa(a, By) T (da)

i=1

= [ (BUp"(Ba) -9 (Bu)l1 - ﬁ:lp(Bj)r—Z?ﬂ v (dp). (46)

where v is the probability distribution on (P, P) of the random probability 5, : (X*°, X>) —
(P, P) such that p1(z)(A) = pi(z,A) forz € X*° and A € X.

With the aid of (4.6), we may now move to the general representation of

T[Xl & Al, ...,Xk € Aﬂ
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for k> 1 and Ay,..., Ay € X. Our first step is to consider the class C of constituents generated
by Ay, ..., Ag. Clearly C is a finite measurable partition of X; assume that C = {B,, ..., By,1}.
Then

T[X1 € Ay, ..., Xy € Ag] =) _7[X1 € By, .., Xi € B;,]

where the sum is over all the possible k-tuples (B;, ..., B;, ) such that B, CAjforj=1,..,k
BEach term appearing in the sum can be represented by means of (4.6). By summing these

representations we obtain:
X1 € Apy ooy Xi € Ay] = fp p(A1)p(As) - - p(Ap)w(dp). (4.7)
An example clarifies the argument. Suppose £ = 2 and A;, A» € X, A; # Ay. Then
Bl - Al ﬂAg, 32 = Al mA;, B3 - A‘fﬂAg, B4 - AiﬂA;
and
AI = .81UB2, Ag e B]_UB3.

Moreover
T[Xl e A]_,Xg = Ag}

= ’T[Xl S Bl,Xz € Bl] "i‘T[Xl S Bl,XQ S B3] +T[X1 € BQ,XQ € Bl] +T[X1 & BQ,XQ [ B3]

_ 2

= [ P(Bvldp) + [ p(Bp(Bo)v(dp) + [ p(Ba)p(Bu)v(dp) + [, p(B)p(Bs)(dp)

= [lp(B1) + p(B)][p(B1) + p(Bs)v(dp)

= [ p(A1)p(42)v(dp).

Note that for the second equality we used the representation (4.6).
We are finally ready for a first version of de Finetti’s representation theorem.

4.8 Theorem. The sequence (Xy,) is exchangeable if and only if there ezists a probability v

on (P, P) such that
(X1, X, ) € 4] = [ 7=(A)v(dp) (4.9)
for all A € X*®. Moreover, v is the probability distribution of the weak limit of the sequence

(3 X, 0x,); hence is unique.

Proof. If (4.9) holds for the law of the sequence (X,), Proposition 3.4 shows that (X,) is

exchangeable.
Viceversa, assume that (X,) is exchangeable; then (4.7) holds. Therefore

T[X1 € Ay, ..., X € Ay =
- /P p(A)p(Az) - - p(Ax)(dp) = /P PP(Ay X Ay x -+ Ay, x X*)u(dp)
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for k > 1 and Ay, ..., Ay € X. This is enough to prove that (4.9) holds.
The fact that v is the probability distribution of the weak limit of the sequence (2 2 dx,)

follows from Theorem 4.4. o

The probability distribution v appearing in (4.9) is called de Finetti measure of the ex-
changeable sequence (X,) (or prior probability distribution in Bayesian inference.) Another
version of de Finetti’s representation theorem, more commonly encountered in the literature,

is the following for which we follow Kingman (1974).

4.10 Theorem. The sequence (X,) is exchangeable if and only if there ezists a random
probability measure py : (X®°, X*°) — (P,P) such that, given p1, the random variables of the

sequence (X,) are conditionally i.1.d. with distribution p;.

Proof. Suppose that there exists a p; : (X®,X*) — (P,P) such that, given p;, the
random variables of the sequence (X,) are conditionally i.i.d. with distribution p;. Then the
law of (X,) admits the representation (3.3) and it is thus exchangeable.

Viceversa, assume that (X,) is exchangeable. Let 1 < k <, 4y,...,4% € {1,...,n} distinct
and @, ..., ¢ real valued, measurable and bounded function defined on (X, A*). Forn > 1

and any n-symmetric f

El¢1(Xs,) - - de( X ) F (X1, Koy ooy Xy X1, -00)] =
= E[‘;bl(Xl) =& '¢k(Xk)f(Xi1:Xiza ey Xik: --':Xn:Xn+1: )]
= E[¢1(Xl) e qsk(Xk)f(Xl! XQ: "'JXan-’rI: )]

where the first equality is true because of exchangeability and the second holds since f is
n-symmetric. By the same argument as in the proof of Theorem 4.2, one then shows that

i
lim &1(Xi,) - (X
n-oo nfn — 1)+ (n — k+1) 1Si1#i:§'#ik5ﬂ 1K k)

= El$1(X1) - 61(X)[Zoo] (4.11)

with probability one.
Let Ay,..., Ay € X*. Then (4.11) implies that

1
e I1X;, € Ay]---I[X;, € 4]
n—00 n(n = l) B (n —k+ 1) 15i1¢i;§~~¢‘ik$ﬂ 1 k

=‘T[X1 EAl,---,Xk EAk|z°o] (412)

with probability one. Notice that

Z I[X“ EA]_]"'I[Xik eAk}

1<y #ia A ik <n
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Zzﬂ:zn:“’zn:.[[XilEAl]"'I[XI'kEAk]— Z I[X,;IEAJ"'I[X“EA;;}—

ij=1lipz=1 =1 1<ii=ig# #ix<n
e — 3 IX;, € Ay) - I[ Xy € A JI[X;, € Ag) —

1<iyFia# - Fig_ 1= <n

= Y IXy € Ay T[X;, € A

11=1

e

Except for the first term, all the other terms in the sum on the right side of the previous equality

are of order less than or .equal to n*~!. Therefore

1
lim IX;, €A X, €4
n—co n(n e 1) - (TL —-k+ 1) l<i1;ﬁi§ ;ﬁik<n [ 2 1] [ k k]

=11m—zz ZIX € A]---I[X;, € Ag]

1= 122 1 =1

= lim H[ ZIX € Aj]] (4.13)

n—)oo
z_l

with probability one. However, because of Theorem 4.2 and the argument following its proof,
forde= 1 sk
1 k)
lim HZI[X, EA_?'] =T[X1 6Aj|7-] (414)
i=1

n—co

with probability one. Equations (4.12), (4.13) and (4.14) imply that

H X1€A|ﬂ_'r[X1 EA]_, XkEAk|Eoo]

with probability one. Since T C Z,

’T[Xl € Al,...,Xk € Akl’r] = E[T[Xl e Al, ...,Xk = AkleH’ﬂ = HT[XI = Ajlﬂ
Jj=1
on a set of probability one. Let 5; : (X*°,X*) — (P,P) be a random probability defined
for z € X* and A € X by pi1(z)(A) = pi(z, A). Then p; is measurable with respect to 7.

Therefore

’T[X}_ € Al:-'-:X’c = Aklﬁl]

n i
= E[r[X1 € Ay, ..., X € Ax|T]|p1] = E[[] 7[X1 € 4;|T1|5:] = ] $u(4;)
3=1 =1
with probability one. This proves that, given 5, the random variables of the sequence (X,,)
are i.i.d. with probability distribution ;. ©

4.15 Example. Let (X,) be a sequence of identically distributed gaussian random variables

with values in R and suppose the correlation coefficient p between any two different variables
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of the sequence is constant. Without loss of generality we assume that, for every n, X,, has
mean 0 and variance 1.

If p = 0, the random variables of the sequence (X,) are i.i.d. N(0,1), and the sequence is
trivially exchangeable. So, let us focus on the case where p # 0; notice that it must be p > 0
since, for alln > 1,

X, 1 nln-1)

0 < Var(==") == .
< Var( n ) n i n?
The sequence (X, ) is exchangeable. In fact, for n > 1, compute the characteristic function

of (Xh ...,Xn),

¢'X1,...,X,1(t1: t ) = €xXp |i_" _[ 1~ Zt2 =t o Z J ¢X1,...,Xn(t01: ---:to'n)

for every ty,...,t, € R and every permutation (o, ...,0,) of the integers (1,...,n). Exchange-
ability now follows from Proposition 3.6. Note that
Theorem 4.2 implies the existence of a real random variable p such that

lim — ZX =l

n—0o n;

with probability one. Indeed, p has distribution N(0, p) since, for n > 1, n7' %, X; has
distribution N(0,n~! + n~1(n — 1)p).
For n > 1, we now compute the characteristic function of (X, ..., Xp,, u). Let ¢y, ..., t,,0 € R;
then
¢X1,...,Xn,,u(tl) seey tn: 9) = 1\;1_1;20 ¢X1,,.,,Xm% E?:l X; (tly reny tn: 9)

However, for N > n,

¢X1,...,Xn,?{,~ X (t1y s tny 0)

n

=E[exp[z';( )X _HN;E;HX]

= exp [ - 51(1- ) (e + )+ (L= AT =)+ (3t + TV - )]

Hence

Oxy, Xnu(ELs ooy tn,0) = exp [— %[( =) gt? $ p(izn:ti + 9)2]}
= oo [-5l0-n3 a5 [exp (- i+ )]
= E[exp [3148] H explipt; — = 1 — p)t7] ] (4.16)

i=1
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The next to the last equality holds because we know already that x has N(0, p) distribution.
The previous representation for the characteristic function of (X}, ..., X,,, ) proves that, con-
ditionally on 4, the random variables of the sequence (X,) are independent and identically
distributed with distribution N(u,1 — p).

Let us indicate with ®,, ,2 the Normal probability distribution with mean m and variance

0? and with ¢, .2 its density. If 7 is the law of the process (X,), equation (4.16) implies that
(X, Xa,....) € A] = f_ %, (A)po,(m)dm, (4.17)

for all A € B*™. In view of Theorem 4.8, how shall we interpret this representation for 77
Let (P, P) be the space whose elements are probabilities on (R, B) endowed, as before, with
the sigma-field generated by the topology of weak convergence. Observe that, for all Borel sets
B eB,
{®m1-,:m€ B} eP.
In fact, it is easy to show that {®,,;_,} € P for every m € R. Hence, for B € B,

{®n1p:meB}={Pp1-,:meQ(|B}eP

where () indicates the set of rational numbers and 4 is the closure of A. Notice that the first
equality holds since if, m, € QN B for n > 1 and the sequence (m,) converges to m, then the
sequence (®p,, 1-,) weakly converges to ®,,1_,. Now set v to be a probability on (P, P) such
that
V({®m,1-p : m € B}) = @0,,(B)

for all B € B. Then (4.17) is equivalent to

7[(X1, Xz, ....) € 4] = fP 7 (A)v(dp)
and, because of Theorem 4.8, v is the unique probability distribution of the weak limit of the
sequence (L ¥%, 6x,).

In many applications in statistics, when facing an exchangeable sequence (X,) one assumes
that the probability v appearing in the representation (2.14) is such that there exist a random
vector © € R* with probability distribution G, and a family {Fp € P : # € R*} such that, for
Be Bt {Fy:0€ B} P and

v({Fy: 6 € B}) = G(B).
Then, conditionally on ©, the random variables of the sequence (X,) are independent and
identically distributed with distribution Fg and representation (2.14) becomes equivalent to
rl(X1, Xa,.) € 4] = [ FFE(A)G(A8);
in this case we speak of a parametric model for the exchangeable sequence (X,,). This will be

the topic of a future paper.
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