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Abstract

We consider urn models for generating infinite exchangeable sequences of random variables
whose de Finetti measure is either a neutral to the right process or a tailfree process.
This work is part of a book on ‘Bayesian theory in a completely predictive perspective’ that

the authors are writing under contract with John Wiley & Somns, Ltd.



1 Introduction

Urn models have a long and relevant tradition in probability and statistics. They serves the
purpose of making concrete the ideas generating a probabilistic model, yet keeping a level of
abstraction which frees them from the particular application for which they were originally
conceived and makes them suitable for purely theoretical consideration. The urn scheme intro-
duced by Polya in 1923 represents the perfect historical example of this precious quality of urn
models: it was introduced for describing contagious diseases and became soon the prototype
for many probabilistic models for treating aftereffects (Feller, 1957). In the following pages it
will be the cornerstone for the construction of widely used priors in Bayesian nonparametrics.

The next section reviews some classic two-color urn schemes, the Polya urn being probably
the most famous. The latter generates an infinite exchangeable sequence of Bernoulli random
variables which are conditionally independent and identically distributed given the random
probability of success which is Beta distributed. This has been generalized by the elegant
result of Blackwell and MacQueen (1973), described in Section 3, who consider a Polya urn
with a continuum of colors generating an infinite exchangeable sequence of real random variables
whose de Finetti measure is a Dirichlet process. Inspired by this result, Muliere, Secchi and
Walker (2000) introduced a class of partially exchangeable processes on a state space of Polya
urns called RUPs for reinforced urn processes; they will be instrumental for the construction of
beta-Stacy and Polya trees priors in Sections 5 and 6 respectively. The last two sections treat

extensions of this approach for the introduction of neutral to the right and tailfree priors.

2 Background on two-color urn processes

The leading character of this section is an urn initially containing ng(b) > 0 black balls and
ng(w) > 0 white balls. At stage n =1,2,... we sample a ball from the urn and we then modify
the composition of the urn following certain specific rules which characterize the urn process
under consideration. This generates a sequence or random variables { X, }, each equal to 0 or 1
according to the color white or black respectively of the ball sampled at stage n. Moreover, for
all n > 1, we set B, and W, equal to the number of black balls and white balls respectively in
the urn before the n + 1-th stage. We are naturally interested in the law of the process {X,}
as well as in the limit behavior of quantities which are functions of B, and W, for instance
the proportion of black balls contained in the urn before the (n + 1)-th stage:
B,
" Bat W,
QOur prototypical two-color urn process is also one of the simplest and of the historically

oldest; it is known under the name of Polya urn after the 1923 paper by Eggenberger and Polya.
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At each stage n > 1, a ball is chosen at random from the urn and put back into it along with
other m > 1 balls of the same color.

For a Polya urn, the dynamics of the processes {X,}, {Bn} and {W,} are governed by the
following: X has distribution l

ﬂo(b)

B i —————).
=R l(ﬂ(}(b) + ng(w)

For all n > 1, conditionally on X, ..., X,,

1 with probability Wﬁan

X = { 0 with probability %EB—H
n+l —

whereas
B, W, +m) with probability —%=_
(Bn+1,Wn+1) — { ( T n ) ' - W;+Bﬂ
(Bn +m, Wy) with probability 3-2ez-.
There are two basic theorems about the processes {X,} and {(B,, W,)} which are both

consequences of de Finetti’s Representation Theorem.

2.1 Theorem. The sequence {X,} generated by a Polya urn is exchangeable and its de

Finetti measure 15 a Beta with parameters (-J-)-m,]nb ,"l—lmmw )

Proof. Let 1 <k <n and (iy, ..., i) such that ¢; € {0,1} and 37_, ¢; = k. Then

k-1 b A i
sy = T £t
11720 (n0(b) + no(w) + jm)
I\(no(b) + no(w)) F(no(bj+k)r(no(w)+n—k)

m m m m

I(2e@)r(aled) (%@ 4 mole) 4 )

1 (Ml 4 nolw)y -y
= fﬂ’“(l—ﬂ)“"“[ (@*&Jrﬂgnﬂ) I )
0 IV RS

Because of de Finetti’s Representation Theorem, this shows that the sequence is exchangeable.
Moreover , the unicity of the representation implies that the de Finetti measure of the sequence
{X,} is a Beta with parameters (%ﬂ, %ﬂ). o

The second theorem considers the limit behavior of the proportion of black balls contained

in the urn.

2.2 Theorem. In a Polya urn, as n grows to infinity, the proportion of black balls
B
Zy = ——
B’ﬂ. + W’ﬂ.
converges almost surely to a random limit. Moreover, the distribution of the limit is o Beta

with parameters (ng(b)/m, no(w)/m).



Proof. For proving the result we could use the fact that the de Finetti measure of the ex-
changeable sequence {X,, } is the weak limit of the sequence of empirical distributions generated
by {X,}. We prefer to follow instead a different approach which is a direct proof of the above
mentioned fact in this particular situation.

We claim that the sequence {Z,,} is a bounded martingale. In fact, foralln > 0,0 < Z, < 1.

Moreover
B,+m B, B W
EBlZ, |41,.... 2, =
[Zn 1l 21 ] Bn+Wn+mBn+Wn+Bn+Wn+mBn+Wﬂ
_ _ B
- B+ W,
= Z.

Therefore, from Doob’s convergence theorem for martingales, the sequence {Z,} converges
almost surely and L' to a random variable Z.

However Theorem 2.1 and the law of large numbers imply that, for n growing to infin-
ity, the distribution of the random variable = 37, X; converges to a Beta with parameters
(no(b)/m, no(w)/m).

Since, for all n > 1,

_ ng(b) +m ¥, X,

0
e ﬂg(b) -+ ng(w) +nm

for any given z € [0, 1],

Z(“o_(?’)+w+1)_”0_(l’))_

S|
™
IS
[ A

Therefore

z F(@@ + "1'0(“)) gt gl
Yim P(Z, < 3) = m_ T m Jg"Pe1y _ gy" -1y
nlanolo ( == Z) _[0 F(@%ﬁ)r(nomw ) ( )

<

2.3 Remark. Note that the quantities ng(b), no(w) and m can be taken to be arbitrary
strictly positive real numbers. Taking them to be integers has the only advantage of permitting
the physical description of the processes involved in terms of balls of two colors sampled from

an urn. <

A generalization of Polya urn is the following urn scheme proposed by Friedman (1949); an
urn initially contains ng(b) black balls and ng(w) white balls. At stage n, with n > 1, a ball is
sampled from the urn and 1+ 7 balls of the same color together with @ balls of the other color
are put back in the urn. If » = 0 and @ = 0 we have the usual extraction with replacement
scheme which generates a sequence of i.i.d colors. If n =m — 1 > 0 and # = 0 we recover the

Polya urn scheme considered above. For n = —1 and § = 1 we obtain the celebrated Erhenfest’s
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urn scheme; note that in this case, at every stage n, the total number of balls in the urn is
constant and equal to ng(b) + ng(w). Moreover, it is an easy exercise with Markov chains to

prove the following result.

2.4 Theorem. Ifn = —1 and @ = 1, the sequence {B,} is an homogeneous, irreducible

Markov chain on {0, ...,no(b) + no(w)} and its stationary distribution is a Binomial(ng(w) +

Therefore, in the case of Erhenfest’s urn, the proportion of black balls,

By,

=B,

converges to a random limit which has a discrete distribution with support on {k/[no(b) +
no(w)],k =0, ..., ng(b) + np(w)} and masses equal to those of a Binomial(ng(w) + ng(b), 1/2).
The situation is radically different when n > 0 and 4 > 0; this case has been considered by

Freedman (1965) who proved the following result which we cite without proof.

2.5 Theorem. Ifn >0 and ® > 0, the proportion of black balls

B,

Zy= "
B, + Wy

converges to 1/2 with probability one whatever the initial composition (ng(b), no(w)) of the urn.

From our perspective a central question is the following: for which 7 and @ the sequence of
colors { X, } produced by a Friedman urn is infinite and exchangeable? When this happens, de
Finetti’s Representation Theorem implies that the de Finetti measure of the sequence is that

of the limit of the sequence {Z,}.

2.6 Theorem. Let {X,} be the sequence of colors produced by a Friedman urn. Then
{X,} is infinite and exchangeable if and only if one the following is satisfied:

(1) n >0 and 8 = 0;
(2) n =10 and ng(b) = no(w).

Proof. Let us compute

o (b) no(w) + 0

P =1Xa=0) = o o) ma() + no®) + 7+ 0

and
no(w) no(b) + 1

ng(b) + no(w) no(w) +ne(b) +n+ 6"

P(X1=0,X221) =



For exchangeability, we require P(X; = 1, X» = 0) = P(X; = 0, X, = 1). This happens either
if § = 0 or if ng(b) = ne(w).

If @ = 0 and 9 < 0, after a finite number of stages there are no balls left in the urn; therefore
the sequence {X,} is not infinite in this case. If § = 0 and n = O then {X,} is a sequence
of i.i.d. Bernoulli{ny()(ne(b) + no(w)) ™) random variables which is clearly exchangeable. For

= 0 and 7 > 0, we fall back in the Polya urn scheme and we proved already that {X,} is in
this case exchangeable.

If 8 # 0 and ng(b) = no(w), in order to have

P(Xl =0,X2:1,X3=0):P(X]_:U,.XQZO,ngl)

we need 7 = 6. Note that in this case the random variables of the sequence {X,} are i.i.d.
Bernoulli(1/2). o

Another generalization of the Polya urn scheme has been proposed by Hill, Lane and Sud-
derth (1987). Let f : [0,1] — [0,1] and for all n > 0 indicate, as before, with Z, the proportion
at stage n of black balls in an urn initially containing ng(b) black balls and ng(w) white balls.
Assume that, at each stage n > 1, a black ball is added to the urn with probability f(Z,_)
and a white ball is added with probability 1 — f(Z,_1). Again we consider the process {X,}
of random variables generated by the urn scheme, with X, = 1 if the ball added at the n-th
stage is black and X, = 0 if it is white. Note that if f(z) = z for all z € [0, 1] we recover the
Polya urn scheme whereas a constant f generates a process {X,} of independent and identi-
cally distributed Bernoulli random variables; both of this processes are exchangeable. Another

trivially exchangeable process can be generated with an f such as

nob
no(b)+no(w)’
no(b

flz)=1{r ifﬂ?:,m(;,)_,_—(-nJm:

. no(b
1 ifz > R RTR

0 ifz <

with p € [0,1]. This f produces a process {X,} where X; = 1 with probability p and X, = X,
with probability one for all n > 1; such a process is termed deterministic.
Hill, Lane and Sudderth prove that the only exchangeable processes { X, } produced by their

urn scheme are the Polya’s process, the i.i.d. Bernoulli process and the deterministic one.

3 A Polya urn for the Dirichlet process

We will now extend the Polya urn scheme of the previous section by considering an urn which

possibly contains initially a “continuum” of colors with a given distribution. This generalization



is due to Blackwell and MacQueen (1973) who introduced it in order to generate an exchangeable
sequence of random variables whose de Finetti measure is a Dirichlet process.

Let X be a metric space, separable and complete, endowed with its Borel o-field A and let
o be a finite measure on (X, A). The space X will be that for the colors of the balls in the urn;
in fact we are imagining an urn containing balls labeled by the elements of X in such a way
that the initial distribution of balls among the colors is that obtained by normalizing the finite
measure . At each stage n = 1,2, ..., a ball is sampled from the urn and replaced in it along
with another ball of the same color. For n > 1, let X,, = z if z is the color sampled at the n-th
stage. Therefore, for all B € &, (8)

P(X, € B) = %

whereas for all n > 1, the conditional distribution of X,.; given X, ..., X,,, is such that

(0] B +E?: 6 i
P(Xni1 € B|X1, . Xn) = : oB(X) o :

forall Be X.
3.1 Definition. The sequence {X,} is called a Polya sequence on X with parameter c.

The initial distribution of colors in the urn is described by the probability distribution

1
~ a(X)

My ¥

For all n > 1, set

il 1
Op =0+ » 0x, and mp = —— " 0.
- o)

Hence, m,, describes the random probability distribution of colors in the urn after the n-th ball
has been sampled; we will say that m, is the probability distribution on X generated by the

Polya sequence {X,} at stage n.
When X is discrete and finite its easy to extend the result of Theorem 2.1; without loss of

generality we may assume that X = {0,...,r}.

3.2 Lemma. Let X = {0,...,7} and {X,} be a Polya sequence on X with parameter o.
Then:

(a) Asn grows to infinity, the random vector (mn({0}), ..., mn({r})) converges with probability

one to a random vector o* = (a*({0}), ..., &*({r}));
(b) The random vector o* has Dirichlet distribution with parameters (a({0}), ..., a({r}));

(¢c) Given o*, the random variables of the Polya sequence { X} are independent and identi-

cally distributed according to o.



Proof. Note that, for all n > 1 and x4, ..., 2, € X,

7 [ﬂ(J)]
PN = oy o =) H (s )[n]
=0 (

where n(j) is equal to the number of z; equal to 7, for i = 1,...,n, and we set a* = a(a +
1)---(a+k—1)if £ > 1 and a/ = 1. This probability does not change for any permutation of
Z1, ..., Tn. Therefore the Polya sequence {X,} is exchangeable and de Finetti’s Representation

Theorem implies that there is a unique distribution G on the simplex
Se={(y1, ) €[0,1] 14 > 0fori=1,...,rand Y y <1}
=1

such that, for alln > 1 and x4, ...,z, € X,
P(-Xl =:L‘1,...,X _:I;ﬂ _f (1_Zy w(0) H,y”( dG yl:---;yr)-

However, if G is the distribution induced on S; by a Dirichlet distribution on [0,1]"** with
parameters (a({0}), ..., a({r})), then

T )=G]
/I—Zy ”(O)Hy 4Gy, ) = Ha({J}

Since the de Finetti measure of the Polya sequence {X,,} is unique, this shows that it must be a
Dirichlet with parameters (a({0}), ..., ¢({r})). Moreover the same de Finetti’s Representation

Theorem implies that the random vector

A3 55,({0])s o = 3 b, (7))

=1 =1

3|>—‘
SI»—‘

converges with probability one to a random vector o* = (a*({0}),...,¢*({r})) whose distribu-
tion is Dirichlet with parameters (a({0}), ..., @({r})). The proof of the lemma is concluded by

noticing that the limiting behavior of

(M ({0}), -y ma({r}))

is the same as that of { &
(E Z 5X1({0})7 reny H z 6)(;({7'}))
i=1 i=1

<

The previous lemma is extended by the following result of Blackwell and MacQueen (1973)
which holds for a Polya sequence on a generic metric space X separable and complete. It

immediately implies a concrete procedure for constructing an infinite exchangeable sequence
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{X,} of random variables with values on X whose de Finetti measure is a Dirichlet process; in
Bayesian inference this serves the purpose of a good analogy for deciding whether the statistical

model for the exchangeable sequence { X, } implied by the Dirichlet process prior is appropriate.
3.3 Theorem. Let {X,} be a Polya sequence on X with parameter a. Then:

(a) Asmn grows to infinity, with probability one the random probability distribution m,, weakly

converges to a discrete random probability distribution o*;
(b) The distribution of a* is Do, a Dirichlet process with parameter o;

(¢) The Polya sequence {X,} is ezchangeable and its de Finetti measure is D,.

Proof. For n > 1, let
fng = o
0 ifj >n,

where

¢

T = 1 if X; # X, foralli < j,
0 otherwise.

Hence f,; is equal to the random mass assigned to the point X; by m, when X; is a color

different from those previously extracted from the urn. We claim that:
(i) For all j > 1, the sequence {f,;} converges with probability one to a random limit f};
(if) with probability one, 37, ff = L.
Given r > 1, let {U,} be a sequence of random variables defined by setting, for all n > 1,

U - j 1272 =1,X =X

" 0 otherwise.
Hence, we consider the distinct colors produced by the urn during the first r stages. If, when
at stage T + m, one of these colors, say that appeared at the j-th extraction among the first

r, appears again, then U, is set to be j. Otherwise U, is set to be 0. It easy to check that,

conditionally on X1, ..., X,, the sequence {U,} is Polya on {0, ...,7} with parameter ¢/ where
o ({0}) = (X) +r)(1 =D frj)
j=1

and, for 1 <j <

o/({7}) = (aX) +7) frs-



For n > 1, let m;, be the random probability distribution generated on {0,...,7} by the Polya
sequence {Uy,} at stage n. Notice that, for 1 < j <r, m/ ({j}) = frin; whereas m/ ({0}) =1 —
3 5=1 frin,;. It follows from Lemma 3.2 that, conditionally on X1, ..., X;, (m/,({0}), ..., m,,({r}))
converges with probability one to a random vector with Dirichlet distribution with parameter

(&/'({0}), ..., &/({r})); let this limit vector be (f3, ..., f7)-
The previous argument proves that, for all j > 1, the sequence {f,;} converges with

probability one to f;. Moreover, for r > 1,

E]l1- Z:f;] = E[E[l1- ifﬂXl’ " |

o/ ({0})
b gy
a(X)
a(X) +7r°

Therefore, by dominated convergence,
Ell-) f;]=lim B[1 -} f;]=0.
j=1 J=1

Since, for all r > 1, 0 < 377, f < 1 with probability one, the previous equation implies that
72, f7 =1 with probability one, thus proving (ii).
Let B € & be given and set, for all n,r > 1,

Spor = ZII[XJ S B]fn,_’f and tn,r = zlfﬂ,j‘
= 1=

J

If A, is the set of distinct colors among those extracted from the urn in the first » stages, then
Sn’,,- = m,,,(AT ﬂB) <_: mn(B) S mn(Ar ﬂB) + mn(fir) — Sn,'r + (1 - tn,'r‘)-
By letting first n — co and then r — co,with probability one has that
Him m,(B) = .ZII[Xj € B|f;. (3.4)
=
Let o be the random probability measure defined on X' by setting

o (B) = if[xj € Blf;

for all B € X. Since X is separable and complete, & is countably generated and equation (3.4)
implies that m, converges with probability one to a*. This proves part (a) of the theorem.

Now let 7 > 1 and V, = {Bjy, ..., B;} be a finite measurable partition of X and set ¢(z) =

T_otl[z € Bj]. It’s easy to check that {#(X,)} is a Polya sequence on {0, ...,r} with parameter
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(a(By), ..., &(B,)). Since the random probability distribution generated on {0,...,7} by {¢(X,)}
at stage n gives mass equal to m,(B;) to the point %, for ¢ = 0,...,7, part (b) of Lemma 3.2
implies that (a*(By),...,a*(B,)) has Dirichlet distribution with parameter (o(By), ..., a(B;)).
Being this true for any 7 > 1 and any finite measurable partition V, of X, the law of o* must
be that of a Dirichlet process with parameter o proving part (b) of the theorem.

The previous argument also helps to show the last part of the theorem: in fact, for any r > 1
and any V, = {By, ..., B;} finite measurable partition of X, part (c) of Lemma 3.2 applied to
the Polya sequence {#(X,)}implies that, for Ci,...,Cp € V,,

P(X,e€Cy,...X,€C,) = E[H a*(Cy))- (3.5)

j=1
Given any finite sequence Dy, ..., D, of sets in X, let V, = {B,...,, B,} be the measurable
partition generated by Dy, ..., D,, that is the class of measurable sets obtained by taking all

the possible nonempty intersections of the sets D; and their complements. Then

Py & Dy Xy 80,) = Y, we 2, PXi €ByyseaX €85
ie(l)  in€(n)
n

- ¥ .. Y E([e(By)

ie(l)  ncln)  j=1

= B[] (D)

where, for j = 1,...,n, (j) = {k € {1,...,7} : By C D;}. This shows that the random variables
of the sequence {X,} are independent and identically distributed according to o* concluding

the proof of the theorem. o

4 Reinforced urn processes

In the context of Bayesian nonparametric inference, the importance of Blackwell and Mac-
Queen’s result described in the previous section is that it gives a simple and concrete procedure
for constructing an infinite exchangeable sequence of random variables with Dirichlet process
as de Finetti measure. The procedure has the additional advantage of making intuitively clear
some of the mathematical properties of the Dirichlet process, like its being discrete with proba-
bility one, as well as some of its inferential prerogatives, like its conjugacy property or the form
of the predictive distribution of the (n+ 1)-th random variable generated by a Dirichlet process
conditionally on the values of the first n variables. In the spirit of Blackwell and MacQueen we
introduce in this section a class of stochastic processes defined on a countable space of Polya

urns which will be convenient for constructing more general classes of priors commonly used
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in Bayesian nonparametric inference like Polya trees and beta-Stacy processes. Much of the
material for this and the following sections is taken from Muliere, Secchi and Walker (2000).

Let S be a countable space and E = {ci,...,cx} be a finite set of colors with cardinality
k > 1. We imagine that a function U associates with every x € S a Polya urn whose initial
composition is U(z) = (ng(c1), ..., nz(ck)), where ng(c) represents the number of balls of color
¢ contained in the urn, for ¢ € E. In fact, U is called urn composition function if it maps S
into the set of k-tuples of nonnegative real numbers whose sum is strictly positive. Hence, S is
the space of labels for a countable number of Polya urns, each with a possibly different initial
composition of balls colored with the same finite palette.

Let ¢: S x E — S be a law of motion with the property that, for all z,y € S, there is at
most one color ¢(z,y) € E such that ¢(z, c(z,y)) =y.

We have now all the ingredients necessary for the construction of a stochastic process {X,,}
on S whose recursive definition goes as follows: fix an initial state zp € S and set X, = zo.
Foralln > 1,if X, ; =z € S, a ball is picked at random from the urn associated with z and
returned to it along with another of the same color. If ¢ € E is the color of the sampled ball,
g6t Xy = gl ek

4.1 Definition.  We will say that {X,} € RUP(S, E,U,q) with initial state xo, where
RUP is the acronym for Reinforced Urn Process.

It’s easy to compute an expression for the finite dimensional laws of the process {X,}.

Before stating this result we need some further notation.

If o = (s9,...,8s) is a finite sequence of elements of S, say that ¢ is admissible if sy = g
and there is a finite sequence (co,...,c,—1) of elements of E such that g(s;,¢;) = s;41 for
i=0,...,n— 1. Given an admissible sequence o, for each z,y € S we count with ¢(z,y) the

number of transitions in ¢ from state z to state y. We then set, forallz € Sandc e E

lo(c) = t(z, (2, ¢))

and
t(z) = ) Ha,y)-
yeS
4.2 Theorem. For alln > 0 and all finite sequences (so,...,8,) of elements of S,
P[Xy=5p,..., Xp = 8p} = 0if (50,...,5n) is not admissible; otherwise

l_m(c)—l :
P[XU = 80y, X’ﬂ = Sn] = H HCGE Hl:o (n$(C) + z)

4.3
z€S H;(:m(j)_l(.? + ZcEE niﬂ(c)) ( )

where the convention is made that [[;" = 1.
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Proof. Let o = (sg,...,S,) be a finite sequence of elements of S. If ¢ is not admissible, it is
evident that P[Xy = sg,..., X = sy] = 0. If ¢ is admissible, then

1L = Bn nelin ] = H e e 44

where
HiglEl = ZI = 6% Brun ) & ]

force Fandi=0,...,n— 1.
Given an element z of the sequence (so,--.,8n 1), let (y1,- .-, Yys)) be the ordered sequence

of elements which follow z in ¢. Then the group of factors in (4.4) relative to z can be rewritten

as
nu(c(@,41)) nale(@ ye)) + Iy = 9ol nale(@, yuw)) + SH i = Yagy]
YecE Nz (C) 1+ eer nm(c) tz) — 1 + Eeep na(c)
_ Meen 119 (na(c) +9)
LSRG+ Teer (o)
From this, (4.3) follows. ' o

A consequence of the previous result is that a reinforced urn process is partially exchangeable
in the sense of Diaconis and Freedman (1980). These authors called two finite sequences o and
¢ of elements of S equivalent if they begin with the same element and, for every z,y € S, the
number of transitions from z to y is the same in both sequences. In addition, they defined
partially exchangeable any process {Y,,} defined on S such that, for all n > 0 and all equivalent,

sequences o = (Sq, ..., Sy) and ¢ = (yo, ..., Yyn) of elements of S,

PIYo = Byys 50 Y =80 = PV == By sy 5= (4.5)

4.6 Corollary. A reinforced urn process {X,} is partially exchangeable.

Proof. Fixn > 1. If ¢ = (sq,...,5,) and ¢ = (yo,...,Ys) are two equivalent and admissible
finite sequences of elements of S, then P[X, = s, ..., X, = s,] depends only on the transition
counts t(z,y), z,y € S, and hence it is the same as P[ Xy = yo, ..., Yy, = y,). If, on the contrary,
o and ¢ are both not admissible, then P[ Xy = so,..., X, = sp,] = P[Xo = %0, -+, Xn = yn] = 0.

<

For a process {Y,,} defined on S with initial state Yy = yp, set 70 = 0 and, for all n > 1,
define
=inf{j > m_1:Y; =yo}. (4.7)
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Then {Y,} is said to be recurrent if
PY,, =Y, for infinitely many n| = 1

or, equivalently, if
P [ﬂ {7 < oo}] =i, (4.8)
n=0

The following representation result of Diaconis and Freedman (1980), which we state without

proof, will be essential for exploring properties of recurrent RUPs.

4.9 Theorem. Let {Y,} be a recurrent and partially exchangeable process defined on S.

Then {Y,} is a mizture of Markov chains.

Corollary 4.6 and the previous representation theorem imply that a recurrent process {X,} €
RUP(S, F,U,q) is a mixture of Markov chains. In order to make the statement more precise,

suppose that Xy = zp, and for all z € §, set
By=fye §:n(elz, g)) > 0}
Then define R® = {z¢} and, for all n > 1, set
= | R
zeRn—1
The states in R™ are those that the process {X,} with initial state z, reaches with positive

probability in n steps. Let

R=|J R, (4.10)

1Cs

Then it follows from Theorem 4.2 that, for all n > 0,
PXo€R,...,X,€R]| =1

Theorem 4.9 and Corollary 4.6 then imply that there is a probability distribution u on the set
M of stochastic matrices on R x R such that, for all n > 1 and all finite sequences (z1,...,2,)

of elements of R,
n—1
P[XO =Ty .oy Xp = m'n.] = /M H m(mja q"j-f-l) M(dm) (411)
5=0

Let M be a random element of M with probability distribution u. The next theorem describes
the measure i by showing that the rows of M are independent Dirichlet processes.
For all z € R, let M(z) be the z-th row of M and a(z) be the measure on R which assigns

mass ng(c) to ¢(z, c) for each ¢ € E, and mass 0 to all other elements of R; finally set
¢(z) = P[X,, = z for infinitely many n|
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4.12 Lemma. Assume that {X,} is recurrent and let xy, ..., ZTm, m > 1, be distinct elements
of R such that ¢(z;) =1 fori=1,...,m. Then M(z,),..., M(z,) are mutually independent
random distributions on R and, fori=1,...,m, the law of M (z;) is that of a Dirichlet process

with parameter a(z;).

Proof. Let z € R be such that ¢(z) = 1. We begin by showing that M (z) is a Dirichlet
process of parameter c(x). For all n > 1, let Y, be the color of the ball picked from urn U(z)
the n-th time it is sampled. Then {Y¥,} is a Polya sequence of parameter U(z). Let us order
the elements of £ by writing F = {¢i,...,c}. Then, as a special case of Lemma 3.2, there is

a random vector ©(z) such that, with probability one,

) 1.2
Jim (E;I[Y;:Cl]"“’EZz-:I[Ezc}c]) = &) (4.13)
and ©(z) has Dirichlet distribution with parameter (nz(ci),...,nz(c)). Furthermore, condi-

tionally on ©(z), the random variables of the sequence {Y,} are indipendent and identically
distributed with distribution ©(z).

For all § > 1, let M) be the doubly infinite matrix indexed by elements of R whose
(s,y) entry MU)(s,y) is the number of transitions from state s € R to state y € R divided
by the number of transitions from state s made by the process {X,} up to time j. Diaconis
and Freedman (1980) showed that, when {X,} is recurrent, MY converges almost surely in the
topology of coordinate-wise convergence to a stochastic matrix M whose probability distribution
is the measure u appearing in (4.11). However, with probability one,

E 1.2
Jim M9 (,q(z,0) = lim =3 11¥i = d
for all ¢ € E, whereas lim;_; MU (z,y) = 0 for all y € S such that g(z,c) # y for all
¢ € E. This fact and (4.13) show that M(z) is a Dirichlet process on S with parameter

a(z). Notice that if z,...,z,, are different elements of R such that ¢(x;) = 1 for ¢ =
1,...,m, then M(z,),..., M(z,,) are independent since the sequences of colors produced by
urns U(zy),...,U(z,,) are independent. o

The next lemma shows that every state in R is visited infinitely often with probability one

by the process {X,} when it is recurrent.
4.14 Lemma. Assume that {X.} is recurrent. Then, for every z € R, ¢(z) = 1.

Proof. We prove by induction on n that for all n > 0 and z € R™, ¢(z) = 1. In fact
@(xo) = 1 by assumption. Assume that ¢(z) = 1 for every state in R” and let z € R*"'. Then
there is a y € R"™ such that ny(c(y,z)) > 0. Since ¢(y) = 1, it follows from Lemma 4.12 that

14



M (y) is a Dirichlet process with parameter a(y). Hence there is a measurable subset A, of M
such that u(A,) =1 and for all m € A,

P[X, = y for infinitely many n|M =m]=1 (4.15)
and
m(y,z) > 0. (4.16)

Equation (4.15) says that y is a recurrent state for a Markov chain on R with transition matrix
m € A,. Moreover, since the class of recurrent states of a Markov chain is closed, (4.16) implies

that z is also recurrent for the same Markov chain; that is
P[X,, = z for infinitely many n|M =m| =1
if m € A,. Therefore

o(x) = [4@ P[X, = z for infinitely many n|M = m|u(dm) = 1.

Lemma 4.12 and Lemma 4.14 immediately imply the following theorem which characterizes

the measure u appearing in (4.11).

4.17 Theorem. If {X,} is recurrent, the rows of M are mutually independent random
probability distributions on R and, for all x € R, the law of M(x) is that of a Dirichlet process

with parameter a(x).

Let (sg,-..,5n) be an admissible sequence. Given that we observed Xy = sq,..., X, = sp,
for all z € S the urn U(z) contains
ng(c) + Iz (c) (4.18)

balls of color ¢, for each ¢ € E; set ﬁ(a:) to be an urn whose composition is that described in
(4.18). The following result is almost obvious but has important implications when one uses

the process {X,} for predictive purposes.

4.19 Theorem. Assume that {X,,} is recurrent. Let (so, ..., Ss) be an admissible sequence
such that P[Xy = sg,...,Xn = Su) > 0. Then, given Xq = So,...,X,, = Sn, the process
(X Xuprss o) € RUPEEB, U, q) with initial state s, and is recurrent.

The probability distribution p has a nice ‘conjugacy’ property, as follows from Theorem

4.17 and the previous result.
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4.20 Corollary. Assume that {X,} is recurrent. Let (sg,...,S,) be an admissible sequence
such that P[Xy = sq,...,X, = 8,] > 0. Then, given Xy = 89,...,X, = 8,, the rows of M are
mutually independent random probebility distributions and, for all x € R, the law of M(z) is

that of a Dirichlet process on R with parameter

a(z) + 3 L(c)d(4(z, ¢))

cClE

where 6(y) is the measure which gives mass 1 to y and 0 to all other elements of R, for each

yER.

Following Diaconis and Freedman (1980), we define an yo-block for process {Y,,} defined on
S to be a finite sequence of states which begins by gy and contains no further yy. Endow the
countable space S* of all finite sequences of elements of S with the discrete topology. When
{Y,} is recurrent, let B; € S*, B, € 5%, ..., be the sequence of the successive yo-blocks in {¥,,}.
The next result was also proved by Diaconis and Freedman (1980) and we state it without

proof.

4.21 Theorem. If {Y,} is recurrent and partially exchangeable with initial state yy, the

sequence {Bp} of its yo-blocks is exchangeable.

Hence the sequence {B,} of z¢-blocks of a recurrent {X,} € RUP(S, E,U,q) is exchange-
able. This implies that if ¢/ is a function which maps measurably S* into another space, the
sequence {1(B,)} is also exchangeable. For example: for all p € 5%, let A(p) be the length of
p and {(p) be the last coordinate of p. Then {A(B,)} and {{(B,)} are exchangeable.

It’s often the case that the de Finetti measure of the exchangeable sequence {¢(B,)} is
simply characterized by the properties of the recurrent urn process which generates it. Impor-
tant examples are, for instance, beta-Stacy priors and Polya tree priors which we will introduce
in the following sections as de Finetti measures of specific exchangeable sequences embedded
in a reinforced urn process. As for the Dirichlet process generated by means of Blackwell and
McQueen’s Polya urn scheme, the advantage of these constructions based on RUPs consists in
that many characteristics of these priors become then intuitively clear: for instance, Corollary
4.20 easily implies that they are conjugate priors, a nice and usefull property for Bayesian

analysis.
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5 Reinforced urn processes for the beta-Stacy prior

A beta-Stacy process on S = {0,1,2,...} is a random distribution function constructed on S

such that, for all £ > 0, the random mass assigned to {0, ..., k} is given by
k
-1 -w;)
7=0

where the random variables of the sequence {W;} are independent with Beta distribution. The
beta-Stacy process has been introduced by Walker and Muliere (1997) and finds its applications
in nonparametric survival studies. In order to construct it by means of a RUP consider the
set of colors E = {w, b} where w is for ‘white’ and b for ‘black’. Let zy = 0 and assume that
no(w) = 0 whereas, for all j > 1, n;(w) > 0. Finally define the law of motion ¢ for {X,} by
setting

g(z,b) =2 +1 and ¢(z,w) =0

for all z € S. Let {X,,} € RUP(S, E,U, q) with initial state 2y = 0.

Therefore, the process { X, } begins at 0 and, given that at stage n > 0 it is at state z € S,
it moves to state z + 1 if the ball sampled from urn U(z) is black and to state 0 if it is white.
Urn compositions are updated in the usual Polya’s way. If n;(b) = 0 for some j > 1, let
N =min{j > 1:n;(b) = 0} and note that, with probability one, the process {X,} visits only
the states {0,...,N}.

By applying (4.3) we get for all admissible finite sequences (o, ..., z,) of elements of S

- 1 1ty Blni(w) +1(5,0), n;(0) + (4,5 + 1))
Elofmeat oo L=l 3‘1;[1 B(n;(w),n;(b))

where, for all a,b > 0, B(a, b) is the usual beta integral.

For alln > 1, let T,, = X, _, where the sequence of stopping times {7,} is defined according
o (4.7); that is 7o = 0 and
=] F S 5K == 0}

for n > 1. When {X,,} is recurrent, T, is the last state of the nth 0-block; that is

Toi=C (Ba):

Equivalently, T}, measures the length of the sequence of states strictly between the n-th zero
and the (n + 1)th zero in the sequence {X,}.

5.1 Lemma. The process {X,} is recurrent if and only if

. n;(b)

i 1] ey o)~ (5.2)
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Proof. For alln > 1,
n—1 ‘T?,(b)
Plr >n]= e Y
> =L mw)
Hence, P[my < oo] =1 if (5.2) holds.

By induction on n, assume that for an n > 1, P[N>,{n < co}] = 1. Then
Plrp <o0] = f Plrpi1 < 00[Ty, ..., T,JdP
ﬂ? 1 {7i<o0}
= L~ lith Plosga > BT s oy T WP,
S ey~ i Pl > KITL, T2

However, for k > max(T},...,T,)+1=1

(v)

Pltay > k|T1,..., Ty SHT()
= j

and the last quantity goes to 0 for £ — oo because of (5.2). Hence P[7,.; < co] =1 and this
proves that (5.2) is a sufficient condition for the recurrence of {X,,}.
In order to prove that the condition is also necessary, notice that P[ry < oo] = 1 if {X,,} is

‘recurrent. Therefore

T ni(b) .
1 _—— = 1] =0.
A L) i) = AR > a1 =0
o
5.3 Corollary. If
& ni(w) _
Lem® ) - 54
the process {X,} 1s recurrent.
Proof. Use the inequality 1 — z < exp™® for z € [0, 1] to show that, for all n > 0,
i n;(b) i n;(w)
Lo+ nw < |~ &m0 +w@)
Hence nal8)
1 S A—
il
if - ()
n;(w B
zZ ni(b) + ni(w) a
o

Therefore, whenever (5.2) holds, the sequence {T,} is exchangeable and, by de Finetti’s

Representation Theorem, there exists a random distribution function F such that, given F the
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random variables of the sequence {7}, } are i.i.d. with distribution F. With the next theorem we
prove that F' is a beta-Stacy process on S with parameters {(n;(w),n;(b))}; that is we show
that F' is a random distribution function on S such that F(0) = 0 with probability one and,

for j > 1, [F(j) — F(j — 1)] has the same distribution as
j—1
Py =W; [I(1 - W) (5.5)

f=1

where {W,} is a sequence of independent random variables such that, for all j > 1, W; has
distribution Beta(n;(w),n;(b)). Note that in (5.5) we assume [J]_; = 1 and that Beta(a, 0) is
the point mass at 1 for all a > 0.

5.6 Theorem. F' is a beta-Stacy process on S with parameter

{n;(w),n;(b)}.

Proof. Fixn > 1 and integers 0 = kg < ky < ... < k,. Then,
P[lekl,...,Tn:kn]
=P[X1=1,...,Xk;1 :kl,Xkl_H:O,...

"XZ;:II kj+n—1 0,.. "XE?:l kj+n—1 = k”’XE?zlkﬁn =il

_ ﬁ B(n;(w) +1(j,0),n,(b) + (5,5 + 1))
=1 B(n;(w), n;(b))

ﬁ W;(Jro)(l _ WT)t(J’j+l)]
j=1

=F

where {W;} is a sequence of independent random variables such that, for all j > 1, W; has

distribution Beta(n;(w),n,(b)). However

§(5,0) = Yo d k] 3 F8 B o Ko
’ 0 otherwise.

Also, because the k;’s are ordered, for all j > 1,

n—1
ti+1) =Y (n—)Ik < j < kiya — 1]
i=0

assuming that the indicator of an empty set is 0. Therefore

P[lekl,...,Tn:kn]
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=F HWI% hﬂ 1—Wj)nﬁ(1—wj)n_l“' ﬁ (1—Wj)]

j=k1 J=kn—1

—E|w, kﬁl(l W)W, kﬁl(l - WJ—)}

L j=0 J=0

=E | A,
=1

where, for all k£ > 1, we defined
k-1

Po=W, [[(1-W))

1=1

and we used the convention that Hg_l = 1. Since {7} is exchangeable, this shows that, for all

n > 1 and all sequences (ky,..., k) of strictly positive elements of .S,
Pl = awmin =k = 8 ﬁij (5.7)
j=1
If one or more elements of (ky,...,k,) are 0, then trivially
P[Ty = ky,..., Ty = ku] = 0. (5.8)

Equations (5.7) and (5.8) are sufficient to prove that the de Finetti measure of the sequence
{T,} is that for the beta-Stacy process on S with parameters {(n;(w),n;(b))}. Note that F is

a random distribution function since we assumed the recurrence condition (5.2) holds. o

As a final remark before concluding the section, note that, for all £ > 1,

ng(w) n;(b)
PT=k
== +m H T
Also, foralln>1and k> 1,
P[Tn+1 = k!leT27“':Tﬂ] = nk( )+nk 1:[ nj b) +m] (5.9)

nk(b)+nk( )+nk+m —i-n:,( )+TLJ+TTLj

on the set N2, { < oo} if, for all 0 < j < k — 1, we define n; = ¥, I[T; = j] and
m; = Y0, I[T; > j]. Therefore, if (5.2) holds, (5.9) is true with probability one.

6 Reinforced urn processes for Polya trees

By specializing the state space S and the law of motion of a reinforced urn process we may

describe an urn scheme for constructing Polya trees: this will be the aim of this section.
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Let E = {0,...,k} be a finite, nonempty set of colors and define S to be the set of all
finite sequences of elements of F including the empty sequence 0. Let U be an urn composition
function defined on S.

Given s > 1, we define the law of motion g, on S x F by setting, for allm > 1,¢q, ...,¢,,c € E,

¢5(0.c) = ()

and
(C1500tms¢) Hl<n<s

0 ifn>s

(B Gy )= {

We now consider {X¥)} € RUP(S, E,U,q,) with initial state X$® = 0. Therefore, for
instance for s = 3, X fs) = (c1) where ¢; is the color first extracted from urn 0, XQ(S) = (1, ¢2)
is the state of S obtained by concatenating to (c;) the color ¢; first extracted from urn (¢;),
X:,(.S) = (c1,¢9,¢3) is the state of S obtained by concatenating to (c¢j,c2) the color ¢y first
extracted from urn (e, cp). The next state is Xf) =X S{i)l = () whatever the color extracted
from urn (cy, co, c3). A this point we start again a sequence of s = 3 successive extractions, the
first from urn @ and then from the urns dictated by the law of motion ¢, and corresponding
to states of S of length respectively 1 and 2 = s — 1 whose composition has been previously
updated according to the Polya’s rule. And so on.

Trivially {X{)} is recurrent. Therefore the sequence of @-blocks of {X*} is exchangeable
as well as the sequence {Xff()s +1y-1)> for n > 1, of the last elements of the (-blocks. This last
sequence has been defined s-stage Polya with parameter U by Mauldin, Sudderth and Williams
(1992) who proved its exchangeability directly without appealing to the partial exchangeability
and recurrence of the sequence {X ()} in which it is embedded.

Let now R be the set of states of S visited by the RUP process {X!¥} with probability
one and defined in (4.10). Then, as we showed in section 4, there is a stochastic matrix M)

on R®) x R such that, for all n > 1 and z1, ..., 2, € R®),

n—1
P = By = ] = E[H1 M) (25, z441)].
j=
Theorem 4.17 states that, for z = (cy,...,cx) € R® and U(z) = (n4(0), ..., ng(k)), the z-th row
M®)(z) of M is a Dirichlet process on R{*) with parameter a(z), a measure which assigns
mass nz(c) to ¢(z,c) for all ¢ € E and mass 0 to all other elements of R, Furthermore, for
z,y € R, z #y, M®)(z) is independent of M®)(y). Moreover, it is crucial to observe that, for
all s > 1 and z € R®, the random vectors M)(z), M*+1)(z), ... have all the same distribution.

For ease of notation, we now define a collection of random variables indexed by elements of
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S as follows: set ©p =1 and, foralln > 1, z = (¢,...,¢,) € Sand c € E,

0,(c) = MO (g, (e1,..snyc)) iz € Riv+1),
¢ 0 otherwise.

Notice that, if s > n+ 1 and z = (21, ..., %,) € R®), the distribution of the random vector
O, = (05(0), ..., ©a(k)) (6.1)

is Dirichlet with parameter U(z); moreover if y € S and y # z the random vector ©, is
independent of ©,.

The collection of random variables ©’s can be associated in a natural way to the elements
of a tree of partitions of the space E* = F x F x E....

Assign to E the sigma-field consisting of all its subsets and, for n =1, 2, ..., set 7, to be the

coordinate function defined for e = (¢, €2, ..., ) € E® by
Wl = ey

Finally endow E™ with the least sigma-field F with respect to which all coordinate functions are
measurable. We now build a tree of finite measurable partitions of £ by letting Vo = {E>}
and, for n > 1, V,, to be the finite measurable partition of E° generated by the coordinate

functions my, ..., m,; that is, V,, is the collection of sets
B={e€ E®:7(e) =cy,...,mp(€) = c}

for ¢, ...,c, € E. Note that for all n > 1, V, has (k + 1)" elements and is finer than V,_i;
furthermore the sigma-field generated by U, V, is F.

For1 < k <n,c,...,cn € Fand B ={e € E* : 7(e) = c1,...,Ta(€) = cpn}, let us call
predecessor of B at level k the set

ps(B,k) ={e € E* : m(e) = c1,...,mp(e) = ¢k} € Vi

Then, for all n > 0 and B € V,, there are exactly k + 1 sets Cy,...,Cx € V41 such that
ps(Cy,n) = B for 1 = 0,...,k. A tree of partition {V,} with such a property is said to be
isodivided.

As a last notation, for A € F and n > 1, we set

Ea(A) = {B €V, : A\ B #0}.

We now introduce a sequence of random variables indexed by the elements of the tree of
partitions {V,} by setting Vo gee =1 and, for n > 1, ¢y,...,cn € Fand B = {e € E® : 7(e) =
81, s Tale) = Gi} = Vi

Va.g = Bey,mien13(Cn)
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where (¢1,...,¢p—1) =0 for n = 1.

6.2 Theorem. The sequence of random variables {Vo g : n > 0,B € V,} induces a
probability distribution T on the space P = P(E*) of all probability distributions defined on
(E>,F) endowed with the sigma-field P generated by the topology of weak convergence. T is
tailfree with respect to the tree of partition {V,} and is a Polya tree.

Proof. In order to prove that the sequence {V, 5 :n > 0,B € V, } induces a tailfree process
on (P,P), it is enough to check the consistency conditions (71) — (Z5) of Cifarelli, Muliere and
Secchi (1999).

Conditions (71) — (73) and (75) are easily verified and follow from the properties of the
random variables ©’s by means of which the V), g’s have been defined. In fact, for n > 0 and
B €V, Vap € [0,1] whereas Vj go = 1 by definition: these are precisely conditions (7;) and
(T3). Condition (T3) is satisfied if, for n > 0 and B € V,,,

Z VTL+1,C = 1 ) (6.3)

CEErH.l (B)

In fact, either n = 0 or B = {e € E® : m1(e) = ¢1,...,Ta(€) = ¢} with ¢y, ...,¢, € E. In both
cases the random vector whose components are the variables V., ¢ appearing on the left side
of (6.3) has Dirichlet distribution; hence (6.3) is true. The fact that the collections of variables

{(Vig:BeVi},{Vap:BeV,}..

are independent follows from independence of the random vectors @, for z € § : this proves

(Ts).
A little more care is needed for proving condition (7) which holds if, for all sequences { B, }

decreasing to the empty set and such that, for each n > 0, B,, is union of sets in V,,
i3
'r}lﬂngolo Z H E[V;Z,ps(B,i)] =0.
BESn(Bn) i=1

For this purpose, we define on E the probability measure 5; such that

Bi({c}) = %

for ¢ € E whereas, for n > 2, we define iteratively on E™ the probability measure f, such that

c c = (e A ey,en_) (Cn)
Bull(ers - )] = Bs{(en o ) D et s

for ¢1,...,¢, € E. From Kolmogorov’s extension theorem it follows that the sequence of prob-

ability measures {f,} uniquely determines a probability 3 on (E*, F). Notice that, for n >
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1,¢1,...s¢n € E and B={e € E® : m(e) = ¢1, ..., Tn(€) = cp} € Vi,

f[lE[Vé,ps(B,z')] = E[04((c1))Or)((c1, e2)) - Oterynen) (1, -, €n))]
i = Bul{(errcn)})
= B(B).
Therefore

BeE,(By)i=1 Be€&n(Bn)

This shows that (T) also holds for the collection of random variables {V;, 5 :n > 0,B € V,.} :
hence this collection induces a probability distribution 7 on (P, P) which is tailfree with respect
to {V,}.

Finally and since the tree of partitions {V,} constructed above is isodivided, in order to
show that 7 is in fact a Polya tree probability distribution on (P,7P), it is enough to recall
that, for n > 1, B € V,, and £,41(B) = {Co, ..., Ci}, the random vector (Voi1,co, - Vati,er)

has Dirichlet distribution as follows from (6.1). o

Following Mauldin, Sudderth and Williams (1992), it is now worth noticing that by mapping
measurably the space E™ into another measurable space (X, X') we can carry over the Polya
tree probability distribution 7 introduced on P(E°) by means of recurrent urn processes to
the space P(X). For instance, let X = I be the unit interval endowed with its Borel sigma-field

and set, for all e = (¢, ¢z, ...) € E®,

—~ _Cn
Ple) = ngl GO
The mapping 1 is continuous and induces a continuous mapping from P(E°°) to P () which
associates to any probability distribution p € P(E*) the probability distribution pypy~—! € P(I)
induced by the random variable 1 defined on (E, F, p); more precisely, for all Borel subset B
of I, set
o™\ (B) = p(y(B)).

Now, if P is a random element of P(E*) with Polya tree distribution 7, then Py~! is a
random element of P(I) with Polya tree distribution with respect to the tree of finite measurable

partitions of I obtained by mapping the elements of {V,} with .

7 Neutral to the right priors

The aim of the last two sections has been to show that reinforced urn processes are adaptable

enough to generate two classes of random probability distributions widely used in Bayesian
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nonparametrics. The fact that beta-Stacy and Polya trees priors can be constructed by means
of RUPs confirms the versatility of the latter class of partially exchangeable processes. There
is, however, a second reason for going through the details of the previous constructions; and
this is that it is now easy to extend them with the purpose of generating the more general
classes of neutral to the right and of tailfree priors insofar as in the definition of a RUP we
substitute Polya urns with more general random generators of infinite exchangeable sequences
of colors. Hence urns will disappear from our following constructions, but their heritage will
be manifest through the inspiring examples of the previous two sections.

In this section we show how to construct neutral to the right priors on a countable state
space S which, for simplicity, will be taken to be {0,1,2,...}. Recall that a random probability
distribution /' on S is said to be neutral to the right if, for all & > 1, the random mass Fj
assigned by F' to the set {0, ..., k} is given by

k
Fo=1-J[0-w)
=0

where Vj, V1, Ve, ... is a sequence of independent random variables with values in (0,1) and such
that

n—rco

lim ﬁ E[1-V;]=0. (7.1)

The beta-Stacy process of Section b is obtained when V4, Vi, V5, ... have Beta distribution.
Our aim is to generate an infinite exchangeable sequence {7},} of random variables with
values in S whose de Finetti measure is /7 by constructing a partially exchangeable process
{X,} on S in which {7,} is embedded. As in Section 5, we introduce a set E = {w, b} of two
colors, white and black. Set {¥,(0)} to be an infinite sequence of black colors; for all j > 1,
let {¥,(7)} be an infinite exchangeable sequence of colors of F whose de Finetti measure has

density (V;,1 —V;). Define a law of motion ¢ on S by setting
g(z,b) =z +1 and g(z,w) =0

forall z € S.
Set Xo=0and, foralln>1,if Xg=m4,..., X1 = 2,_1, let

Xﬂ = Q(‘,‘Enfla }/t(a:n_l)+l($ﬂfl))‘

where, as in Section 4, ¢(z,—;) counts the number of appearances of state z,_; made in the
finite sequence (0,...,z,_1). Hence the process {X,} starts in 0 and moves to state X; = 1.
The next state X, is 0 or 2 according to the first color generated by the exchangeable sequence
{V,(1)}; if X2 = 0, then X3 =1 and X, is 0 or 2 according to the second color generated by
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{Y,(1)}. If X5 =2 then Xj is 0 or 4 according to the first color generated by {Y,(2)}. And so
on.
For all j > 1 and n,m > 0, let us define

Aj(n,m) = E[V*(1 - V;)™].
Then it is not difficult to check that, for all admissible sequences (0, ..., z,) of elements of S,

P[Xy=0,...,X, = ] HA 14,7 + 1)) (7.2)

where, as in Section 4, for all j € S, #(4,0) counts the number of transitions from state j to
state 0 and t(j,7 + 1) counts the number of transitions from j to the following state j + 1 in
the sequence 0, ...,x,. This shows that the process {X,} is partially exchangeable. With an
argument analogous to that of Lemma 5.1 one may prove that {X,} is recurrent when (7.1)
holds; in this case {X,} is a mixture of Markov chains.

For alln > 1, let T;, € S be the last coordinate of the nth 0-block of the process {X,,} when
it is recurrent. Then {7},} is exchangeable. The next theorem describes the de Finetti measure
of the sequence {7}, }; it can also be considered as a characterization of a neutral to the right

process via a mixture of Markov chains.

7.3 Theorem. The de Finetti measure for the exchangeable sequence {T,} is the neutral

to the right prior F.

Proof. As in the proof of Theorem 5.6, we aim to show that, for all n > 1 and all finite

sequences (ki, ..., ky) of strictly positive elements of S,

—E|[[ B
j=1

where, for all j > 1, P; is the random variable allocating the random mass to j € S defined by
Py=F— Fa = V;IIIG (1- V).
Equation (7.2) implies that

PTi=ky,...,Tp=

1

PITy = k..., To = bl = [ AGG,0), 45 + 1) (7.4)

where, for all z,y € S, t(z, y) counts the transitions from z to y made in the admissible sequence
(0,1,...,k,0,1,...,ks,...,0,1, ..., kp,0).

However,
11 (¢,0) 65+ 1) HE[ V001 = vy)asth]

From here the proof proceeds analogously to that of Theorem 5.6. o
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8 Tailfree priors

Having seen how to construct neutral to the right priors on countable spaces by means of a
partially exchangeable scheme which is a generalization of a RUP, we now turn to the construc-
tion of random distributions which are tailfree with respect to a isodivided tree of partitions
along the lines followed in Section 6 for constructing Polya trees.

Let E = {0,...,k} be a finite, nonempty set of colors and let S be the set of all finite
sequences of elements of E including the empty sequence @. For all z € S, let {Y,,(z)} be
an infinite exchangeable sequence of elements of F and denote with @, the density of the de
Finetti measure of the sequence: hence ©, is a random vector of [0,1]**! with components
which sum to 1. We assume that sequences of ¥’s corresponding to different elements of S are
independent.

Finally, consider again the same law of motion that we used for constructing Polya trees in
Section 6; therefore, given s > 1, let g, be defined on § x F by setting, for alln > 1,¢q,...,¢,,¢ €
E,

gs(0,¢) = (c)
and
(€1y.nCpyc) ifl <n<s,
] ifn > s.

Gl (B wneyfi), &) = {

We are now ready for the recursive definition of a partially exchangeable process {X*} on
the space S. Set Xés) =@. Forn>1,if XéSJ = ...,Xﬁl = Zp—1, Set

-X-r(ls) = QS(‘T’R—li m(wn,1)+1($n—l))
where t(z,—1) counts the number of appearances of z,_; within the sequence of states
Ly ooy Tp—1-

Therefore X{* = (c;) where ¢, is the first color generated by the sequence {¥;, (@)} , that is
the realization of Y;(0), X{ = (c1,cz) where ¢, is the first color generated by {¥;((c1))}, and
so on for the first s stages. The next state X §j)1 = (), then X 5(1)2 = (c}) where ¢| is the second
color generated by {Y,(0)}, X% = (c,, ) where ¢} is the first color generated by {¥,((c,))}
if ¢| # c1 whereas ¢} is the second color generated by {¥;,((c1))} when ¢| = ¢;. And so on.

The sequence {X ('} is partially exchangeable; to prove this compute P[Xy = z, ..., Xn =
zy), for n > 1 and xo, %1, ..., 2, € S, by first conditioning to the random variables Oy, ..., O,
and notice that this probability depends on zy, ..., z, only through the number of transitions
t(z;, Tiy1), for ¢ =0,...,n — 1. Moreover, {X ()} is trivially recurrent and therefore is a mixture

of Markov chains.
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Let us now consider the space E*° = E x E X E X .... endowed with the least sigma-field
J with respect to which all the coordinate functions m,, for n = 1, 2, ..., are measurable. As
before, {V,,} is the isodivided tree of measurable partitions such that Vy, = E™, whereas, for
n > 1, V,, is the finite partition of £ generated by the coordinate function ,. To each set
belonging to a partition of the tree {V,} we associate a random variable by setting Vj geo = 1
and, for n > 1,¢1,...,¢, € E and B= {e € E® : mi(e) = c1,...,Mp(€) = cn} € Vs,

Vn,B = ®(c1,...,cn71) (Cn),

the c,th coordinate of the vector O, .,_,), where we assume (ci,...,cp—1) = 0 for n = 1.

Analogously to Theorem 6.2, the next result proves that the sequence of random variables
constructed above induces a tailfree probability distribution on the space of all probability
distribution defined on (E*, F); as we observed at the end of Section 5, by mapping measurably
E* into another measurable space (X, X) one can carry over this tailfree prior to the space of
all probability distributions defined on (X, &).

8.1 Theorem. The sequence of random variables {V, 5 : n > 0,B € V,} induces a
probability distribution T on the space P of all probability distributions defined on (E>,F)
endowed with the sigma-field P generated by the topology of weak convergence. T 1is tailfree
with respect to the isodivided tree of partitions {V,}.

Proof. As in the proof of Theorem 6.2, we need to check the consistency conditions
(T1) — (T5) of Cifarelli, Muliere and Secchi (1999). As before, this is easily done for condi-
tions (71), (T»), (T3) and (T5). For proving condition (7}) we define on the space E, endowed
with the sigma-field of all its subsets, the probability measure £; such that

Bi({c}) = E[Oy(c)]

where Oy(c) is the cth coordinate of the vector ©y. For n > 2 we define iteratively on the space
E™, endowed with the sigma-field of all its subsets, the probability measure 3, such that

ﬁn({(cla ) cn)}) = 5n_1({(01, reey Cn—l)})E[e(q,...,cn_l](Cn)]

for ¢y, ..., ¢, € E. The sequence of probability measures {3,} determines uniquely a probability
B on (E*,F) such that 8(B) = B,(B) for all n > 0 and B € V,. Now follow the final lines of
the proof of Theorem 6.2 to show that, for all sequences of sets {B,} decreasing to the empty
set and such that, for each n > 0, B, is union of sets in V,,
n
Jim > JIEVipssal = lim B(B,) = 0.
BEEn(By) i=1

This shows that condition (7}) holds and concludes the proof of the theorem. o
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