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Abstract

Following an idea of Regazzini and Petris (1992) we present a method for constructing ran-
dom probability measures for Bayesian nonparametrics based on de Finetti’s Representation
Theorem.

This work is part of a book on ‘Bayesian theory in a completely predictive perspective’

that the authors are writing under contract with John Wiley & Sons, Ltd.



1 Introduction

In Bayesian nonparametrics the role of the parameter appearing in a statistical model is taken
by a probability distribution; therefore, the parameter space becomes a class of probability
distributions defined on a given sample space. A Bayesian usually considers the class of all
probability distributions on the sample space and defines a probability on this class, the so
called prior distribution.

A precise description of a Bayesian nonparametric problem, the first to our knowledge,
appears in de Finetti (1935) in a paper about the problem of fitting a smooth curve onto an
empirical distribution. At that time workable prior distributions on spaces whose elements
are probabilities were not known. For these we have to wait until the 60’ when a few schemes
were put forward. D.A. Freedman (1963) and J. Fabius (1964) introduced a class of random
probability distributions named tailfree. Unfortunately, these papers were not directly aimed
at Bayesian nonparametric analysis so that their importance with respect to this topic was
not immediately recognized. J.E. Rolph (1968) suggested a scheme for constructing random
probability distributions based on moments evaluation. A definite impetus to nonparametric
inference whithin the Bayesian approach to statistics came eventually with the papers by
Ferguson (1973, 1974) and Doksum (1974), based on the cited works of Fabius and Freedman,
as well as on the papers by Dubins and Freedman (1963, 1966) and Freedman (1965). In these
papers a particular tailfree prior distribution is presented, namely the Dirichlet process, that
has the double advantage of having a large support, with respect to a suitable topology on the
space of probability distributions on the sample space, and of being analytically manageable
for Bayesian posterior computations. Since then the literature on Bayesian nonparametrics
has grown enormously and the need for solutions of new problems has caused the introduction
of new prior distributions.

In the next pages, following an idea of Regazzini and Petris (1992), we present a method
for constructing prior distributions for Bayesian nonparametrics based on de Finetti’s Rep-
resentation Theorem. After having applied the method for a direct introduction of the
Dirichlet process, we will consider the more general class of tailfree processes and a special

subclass of them named Polya tree processes.



2 The nonparametric model

Let X be a metric space, separable and complete, endowed with its Borel o-field X'. We
write P for the class of all probability measures defined on (X, X) and we endow P with
the o-field P generated by the topology of weak convergence, that is the smallest o-field
according to which are measurable all mappings p4 : P — [0,1], with A € X, defined for all
p € P by

In Bayesian statistics one often encounters the following situation: given a sample of n
values in X, these are assumed to be realizations of n random variables belonging to an infi-
nite exchangeable sequence { X, } of random variables with values in X. Exchangeability and
de Finetti’s Representation Theorem imply the existence of a random element P € P such
that, conditionally on P = p, the random variables X,,’s are independent and identically
distributed with probability distribution p. Initial opinions about the sequence {X,} are
expressed through the probability distribution v of P and updated by means of Bayes The-
orem; all inferential questions related to the sequence {X,} are then answered on the basis
of the conditional probability distribution of P, given the observed sample from {X,}. The
aim of this section is to construct a formal framework where this problem can be embedded.

Let us first consider the space (X, X*) where X* indicates the set of all infinite
sequences x = (x1,Zs,...) of elements of X whereas X'* is the o-field generated by the
subsets of X of the type

Al X X Apx X¥ ={z e X® 11 € Ay,... 2, € Ay}

with n > 1 and A;,..., A, € X. It is a standard result of measure theory (Ash 1972,
Corollary 2.7.3) that, for all p € P, there exist a unique probability p* on (X, X'*), called
the product probability measure, such that

P(Ar X -+ x Ay x X¥) = [] p(4))

foralln >1and Ay,..., A, € X.
Since we are concerned with an inferential problem whose basic ingredients are an infinite
exchangeable sequence {X,} of random variables with values in X and a random element

P € P, the natural space where to embed it is the product space (X x P, X* x P) where

X®xP={(z,p):x € X*,peP}



while X'*° x P is the smallest o-field of subsets of X*° x P containing the family of measurable
rectangles {A x B: A€ X* B € P}.

The probability distribution v of P, often called the prior probability distribution, plays a
pivotal role for the definition of a probability measure on (X*° x P, X* x P). In fact, given

a probability measure v defined on the space (P, P), we set

7(C) = [ p*(fr € X (2,p) € Chu(dp) (2.1)

for all C' € X x P. Note that, when C = (A; X --- x A, x X®°) x B, withn > 1,4, € X
fori=1,...,n and B € P, then

ﬂ®=LﬁM&M®)

2.2 Lemma. 7 is a probability measure on (X*° x P, X x P).
Proof. First observe that
7(X® x P) = /Pp°°(x<>°)y(dp) ~1.
Now let C, Cy be two disjoint sets in X*° x P; then

m(C | Co)
= [ r=({x € X*: (e.p) € LU Ca)(dp)
= [Pz €X*: (@.p) € C1}Ufr € X% : (w.p) € Co)u(dp)
= [ p*({z €X*: (a,p) € Cihu(dp) + [ p*({z € X*: (a,p) € Ca})v(dp)
= 7(C) + 7(Cy)
where the third equality follows from the fact that the sets

{r € X*: (z,p) € C1} and {z € X*: (z,p) € Cy}

are disjoint for all p € P. This proves that 7 is finitely additive.
In order to prove that m is countably additive, let C;,Cy,...,Cy,... € X* X P be an

infinite sequence of sets decreasing to the empty set; note that, given any p € P, the sets

{r € X*®:(z,p) € Cr} € X*®, n=12,...,



decrease to the empty set when n grows to infinity. Then

lim 7(C,)

n—o0

— lim / p({z € X*: (z,p) € C,})v(dp)

n—00

- / lim p®({z € X : (z,p) € C,})w(dp) = 0

n—oo

where the next to the last equality holds because of Dominated Convergence Theorem.
Hence 7 is a probability on (X* x P, X* x P). o

2.3 Definition. Given a probability measure v on (P, P), we call statistical model the
triple
(X®* xP,X* x P,n),

where the probability m is defined as in (2.1).

Since 7 is a probability measure on the product space (X*® x P, X*® x P), it induces
two probability measures on the spaces (X, X*°) and (P, P) respectively. In fact, for all
B eP,

7(X*® x B) = v(B),

the prior probability distribution. Analogously, for all A € X'*°, set
T7(A) = 1(A x P);

T is a probability measure on the space (X, X*°) commonly called the law of the process

{Xa}.
2.4 Lemma. 7 is exchangeable and its de Finetti measure is v.
Proof. Let n > 1, A;,..., A, € X. For each permutation o = (0(1),...,0(n)) of (1,...,n),
T(As1y X -+ X Agny X X%) (2.5)

—/Hp v(dp) = 7(Ay x -+ x A, x X*);

this proves that 7 is exchangeable.
The fact that v is the de Finetti measure of 7 follows from (2.5) and de Finetti Repre-

sentation Theorem. o



Any random variable belonging to an infinite exchangeable sequence {X,} and with
values in X can be regarded as a projection of X*° x P into X. In fact in what follows we
will assume that, for all n > 1, X, : X*° x P — X is defined by setting X, (z,p) = z, for
all z = (z1,22,...) € X* and p € P. Given n > 1, let 7, be the probability distribution
induced on (X", X™) by the random vector (X1,...,X,,) : that is, for all A € X", set

T(A) =7((X1,..., Xp) € A) =7({z € X* : (21,...,2,) € A}). (2.6)
Therefore, for all n > 1 and Ay,..., A, € X,
7T(X1 GAl,...,Xn EAn):T(Al Xoeee XAn XXOO),

which shows that the sequence {X,} has law equal to 7 and therefore is exchangeable with
de Finetti measure v.

Analogously, if P : X*°xP — P is defined by setting P(x,p) = pforallx = (x1,22,...) €
X* and p € P, then it is easy to check that the random element P € P has probability
distribution v. It is well to remark that, since for allmn > 1, Ay,..., A, € X and B € P,

7(X1 € Al Xn € An, P € B) = 7((A; X ... x Ay x X*) x B) =/BHp(Az-)l/(dp)
i=1

we may conclude that, conditionally on P = p, the random variables of the sequence {X,}
are independent and identically distributed with probability distribution p.

Furthermore, since X* x P is separable and complete, for every n > 1 and (z1,...,z,) €
X", there exists a regular conditional probability ¢ on X*° x P given Xy = z¢,..., X, = 2,
(Ash 1972, Theorem 6.6.5). This means that, for n > 1, there exist a function ¢ : X" X
(X x P) — [0,1] such that:

(a) For all (zy,...,2z,) € X", ¢((x1,...,2,),-) is a probability on X x P.
(b) For all C' € X*° x P, q(-,C) is a measurable map from (X", X™) to ([0, 1], B[O, 1]).
(c) Forall Ae X", C € X*° x P,

T(CN (X1, .., Xa)H(A)) = /Aq((a:l, ey @), O)T(dy - -~ ).

We will often write 7(C| X1 = x1,..., X, = zy) for ¢((z1,...,2,),C).
Given n > 1 and (zy,...,2z,) € X" the probability v(-|X; = z4,..., X, = z,) on (P, P),
defined by setting

v(BI Xy =21,..., X, =2,) =q¢((z1,...,2,),X® x B) =71(X* x B|X; =21,..., X, = Zp)
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for all B € P, is called the posterior probability distribution of P: this is the conditional distri-
bution of P given X; = zy,...,X,, = z,. Analogously, given m,n > 1 and (z1,...,z,) € X",
the probability 7,,,(-| X1 = z1,..., X = x,) on (X™, X™) defined by setting

Tm(A|Xy =21,..., X, =2,) = q((21, - .., 2,), (A x X¥) x P),

for all A € X'™, is called predictive probability distribution of X, 1, ..., Xy : this is in fact
the conditional probability distribution of X, 1,..., X1 given Xy = 21,..., X,, = z,,.

3 Constructing random probability measures

The aim of this section is to discuss a method for constructing probability measures on the
space (P,P). The method looks appealing for determining prior probability distributions
for nonparametric statistical models; as a first illustration, we will use it in the next section
for constructing the celebrated Dirichlet process introduced by Ferguson (1973). The same
method will then be used for constructing tailfree processes, very general priors of which
Dirichlet processes, as well as the Polya tree processes of Mauldin, Sudderth and Williams
(1992), are a subclass.

If v is a probability defined on (P,P), for all n > 1 and A, ..., A, distinct elements of
X let us indicate with g4, . 4, the probability distribution induced on ([0,1]", B"[0,1]) by

the random vector (p4,,...,pa,); that is

201 (C) = V({D € P+ (94, 0), ., 94, (1)) € CF) = v({p € P+ (A, ... p(40) € C})
(3.1)
for every Borel subset C' of B"[0, 1].
Set
Q ={qa,..4,:n>1and Ay,..., A, distinct elements of X'}.

We begin by enumerating some natural consistency properties satisfied by the elements of
Q:

(Cy) Forallm > 1 and A,..., A, distinct elements of X, g4, 4, is a probability measure
on ([0,1]™,B™[0,1]) such that, for every Borel subset C of B[0, 1]",

QA1,.04,(C) = 04, 1y Ag(my (0C)
where 0 = (0(1),...,0(n)) is any permutation of (1,...,n) and

oC = {(Cva(l),...,l'a(n)) € [0, 1]” : (xl, . ..,:En) S C}



This is obvious since, for every Borel subset C' of [0, 1], the two sets

{peP:(pa(p), -, p4.(p) €C} and {p € P : (pa,,(P),---,p4,, (p) € cC}

describe the same event.
(C2)
gx = 61
where 6, indicates the point mass at z, for all z € R.

This property is true since

for all p € P.

(C3) Let n > 1 and Ay,..., A, distinct elements of X. Let By,..., B, € X be a finite
partition of X such that

1)

(n)
where, for ¢ = 1,...,n, (i) indicates the set {j € {1,...,n} : B; C A;} which we
assume to be nonempty. Then, for every Borel subset C' of [0, 1]",
qur'-;ATL (C) = quy;Bm({(‘/L‘l’ ttt 7 O 1]m : ij’ DR Z‘/L‘J) E C})'
(n)

This property follows after noticing that, for allpe P and i =1,...,n,
=p(UB;) =>_p(B)) = 3¢5,
(1) (1) (1)

(C4) Let {A,} be a sequence of elements of X’ decreasing to the empty set. Then g4, weakly

converges to 0y, when n goes to infinity.

This follows from the fact that, for all p € P,

lim pa, (p) = lim p(4,) = 0= py(p).

n—00 n—00

Therefore a probability measure v on (P, P) generates a family Q of probability distri-
butions whose elements are indexed by finite sequences of distinct elements of X and satisfy
the consistency conditions (C7) — (Cy). The main question we want to address in this section

is whether, given a family

Q =1{q4,,..4, :n>1and A,..., A, distinct elements of X'}



whose elements are probability measures satisfying (C;) — (Cy), there exists a unique prob-
ability measure v on (P, P) such that, for all n > 1 and distinct Ay,..., A, € X, qa,,..4, is
the probability distribution of the random vector (pa,,-- -, ga,)- The next theorem answers
positively to this question; the argument for its proof, based on an idea of Regazzini and
Petris (1992) and Regazzini (1996), considers an exchangeable probability measure p gener-
ated by Q on the space (X*, X*°) and shows that its unique de Finetti measure is the right
von (P,P).

3.2 Theorem. If the elements of Q satisfy the consistency conditions (C1) — (Cy), there
exists a unique probability measure v on (P,P) such that, for all n > 1 and Ay,..., A,

distinct elements of F,
v({p €P: (pa,(p), ..., p4.(p) € C}) = qa,,...4,(C)
for every Borel subset C of [0, 1]™.

The theorem will be proved by means of the following lemmas that are stated with the
assumption that the elements of Q satisfy (C1) — (Cy).
For all n > 1, let F™ be the field of finite unions of disjoint rectangles of the type

R=Dyx---x D,

with Dy,..., D, € X. Given n > 1, for every rectangle R = Dy x --- x D,, € F™ we define

pn(R) = pin(Dy X - -+ X Dp) = /[0 Jjm Yi' e Y GAy A (Y1 - AY) (3.3)
where Ay, ..., A, are the distinct elements of the sequence Dy,..., D, and, fori=1,...,m,

r; indicates the number of times the set A; appears in the sequence. If F' = Ule R; is a

finite disjoint union of rectangles of F" we define

in(F) = Y pa(Ry). (3.4)

3.5 Lemma. For all n > 1, the set function p, is a well defined, finitely additive ex-
changeable probability on F™.

Proof. Let n > 1. We begin by showing that p, is well defined on F™.
First notice that, if R = D; X --- x D, is a rectangle, the definition of u,(R) does not

depend on the order of the sets of the sequence Dy, ..., D, nor on the order of the distinct
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elements Aj, ..., A, of the sequence since the elements of Q satisfy (C}). This also implies
that, if u, is a well defined probability on F™, then it is exchangeable.

Next assume that the rectangle R is a finite union of disjoint rectangles of F"; that is
assume that R = Ule R; where, fori=1,...,k,

Ri:Di’lx...xDm

with D;1,...,D;, € &, and the R; are disjoint. Then

k k
R=(UDs1) x...x (U Din)
i=1 i=1
and according to (3.3),
pin(R) = /[O g V1Y A (A1 -+ i) (3.6)

where Ay, ..., A, are the distinct sets appearing in the sequence Ule Diq,..., Ule D;,. We

need to show that \

i=1
Let {Bi,...,B;} be a partition of X generated by the sets D,; with ¢ = 1,...,k and
j =1,...,n; that is the class of sets in X obtained by taking all the possible intersections
of the sets D, ; and their complements. Fori =1,...,kand j =1,...,nlet (4,5) = {s €
{1,...,t} : By C D;;} and (j) = U%_,(4,5). Then (3.6) and property (C3) imply that

/ H[Z yT 4By,...,B: dyl dyt)
0,1 J=1re(j)
However (3.3) and property (Cs) imply also that, fori =1,...,k,
/ H[ Z yT]q31 ..... By dyl dyt)
J 1 re(i,g)
Therefore (3.7) is proved if we show that

n

I11 Zyr]—ZH[Z ur] (3.8)

J=1re(d) i=175=1re(i,j)

for all (y1,...,y;) € [0,1]%. For any given (y1,...,¥:) € [0, 1], imagine that the sets By, ..., B;
have measures yi, ..., y; respectively; then both sides of (3.8) would represent the product

measure of R. Therefore they must be the same.
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Now let F' = Ule R; where the R; are disjoint rectangles of " and assume that F' can
also be represented as U*_; R where the R} are also disjoint rectangles of . Then we need

to show that . y

;mﬂm=§%4&) (3-9)
However, for s =1,... k',

=mﬂF:OWHWM

i=1
so that, by (3.7),
pn (R) = iun(R’s (N R);

hence i

Analogously, one shows that

> pin(Bs) = X pa(RLV Ry

and this proves (3.9).
Therefore p, is well defined on F". Definitions (3.3) and (3.4) imply that u, is nonnegative
and additive. Finally note that

pn(X") = / Y gx(dy) =1
[0,1]
because of (Cy). Hence p,, is a finitely additive probability on F™. o
3.10 Lemma. For all n > 1 and every sequence {Ey} of elements of F" such that

E1 QEQ 2 andﬂ,é“;lEk:(Z]:
255, (B =0

Proof. Let us first prove that the lemma is true for ;. In fact, F* = X and if {E}} is a

sequence of elements of X' decreasing to the empty set, then
hm ,ul(Ek = hm / yqe, (dy) =0

because of (Cy). This fact and Lemma 3.5 prove that u; is a probability measure defined on
X.

10



Now notice that, for all A € X and n > 2,
pn(AX X" 1) = (X x Ax X" ?) = ... = p,(X" 1 x A) = py(A).

In fact this is trivially true when A = X; when A C X we have, for instance,

’ ’

pn(A x X"7H) = /[0 i y1ys~ qax(dyrdys) = /[0 it Y2)" " qa . (dyrdys)

where the first equality is true by definition whereas the next one follows from (C3). However,
for all D € BJ0, 1],

qa,ac({(y1,92) € [0, 1]2 1y1 +y2 € D}) = gx(D) = 61(D)

where the first equality follows from (C3) while the last one is true because of (Cy). Therefore,
for all Dy, Dy € BJ0, 1],

qa,ac({(y1, 2) € [0, 1]2 ty1 € Dy, y1 + Y2 € Dy})
= 01(D2)qaa-({(y1,92) € [0,1)° : y1 € D1})
= 51(D2)QA(D1)

where the last equality follows once again from (Cj3). This implies that

pn (A x X" = /[0 . y19a(dyr) = pa (A1),

Since X is a separable and complete metric space endowed with its Borel o-field X, for
all A € X and € > 0 there is a compact set K € X, K C A, such that p(A\K) < €
(Ash, Theorem 4.3.8). This implies that, for all n > 1, ¢ > 0 and F' € F", there is a set
K € F" compact with respect to the product topology of X" and such that K C F' and
wn(FA\K) < e. In fact let F = ", R; where Ry,..., R, are disjoint rectangles of F"; for
1=1,...,m, assume that

Ry =A;1 x--- X Aipy

with 4;; € X for j =1,...,n. Fori =1,...,mand j = 1,...,n let K;; be a compact
subset of A; ; such that

€
p (A \Kij) < pown

and set K; = K;; X -+- X K ,; then K; C R;. Let K = U2, K; € F". K is compact with
respect to the product topology of X" and

m

pa(F\K) = Mn(U(Rz\Kz))

=1

11



fn (R \K)

I

~
Il
—

<

Mz

L UXx X X X A \Kij x X x - x X)

1 =

; A\E)

<.
Il

<

||M§

where the first equality follows from the fact that the rectangles R; are disjoint.

Now consider a sequence { Ey} of elements of F” such that £y O Fy O ... and N2, By =
(. By way of contradiction assume that {u,(Ey)} does not converge to 0. Then, there is a
€ > 0 such that

pin(Ex) > € (3.11)

for all k. For s = 1,2,..., let K be a compact subset of Eg such that p,(E;\K;) < €27°.
Then, for all k =1,2,...,

in(BA VKD < Y ialB\K)

< Zl pn(E\K)

€
< =
- 2

where the second inequality follows from the fact that F, C E,_; C ... C E;. Therefore, for

all k> 1,
k

() Ks) > 5

s=1

l\')lm

hence, for all £ > 1, ﬂ’;zl K, is non empty, and since the K are compact, this implies that
ﬂle K, # (). However this contradicts the assumption that N3, E, = @) since K, C E, for
all s. Therefore (3.11) is false and

lim p,(Ex) = 0.
k—o0
o

The previous two lemmas show that, for all n > 1, u, is a probability measure defined
on the field of rectangles F7". By means of Caratheodory’s Theorem we may then extend
uniquely u, to a probability measure on the o-field generated by F" which coincides with
X", the product o-field in X"; we will continue to write u, for the probability measure on
(X™, X™) thus constructed.

12



3.12 Lemma. There is a unique probability measure p on (X, X*°) such that, for all
n>1and Be X",

p({(z1,z2,...) € X*: (21,...,2,) € B}) = un(B).

Proof. We show that the sequence of probability measures
1, to, ... on (X1 XN (X% X%, ...

possess Kolmogorov’s consistency property (see Shiryayev (1984), Theorem 2.3.3). For this
it is enough to verify that, for all n > 1 and every rectangle R = Dy x - -+ D,,, with D; € X,

pins1 (B X X) = pn(R). (3.13)

Before proving (3.13), assume that Aq,..., A, are m > 1 distinct elements of X’ such
that A; C X for all ¢ =1,...,m, and consider the probability measure gx 4,,..4,, defined on
B™[0,1]. If By,..., By is a finite partition of X with elements in X and such that

A1 :UBJaaAn == UBJ
(1) (m)
where the set (i) = {j € {1,...,k}: B; C A;} is assumed to be nonempty for i =1,...,m,
property (C3) implies that,

4x 41,4, (Co X - -+ X Cpy)

k
=gp,..8,({(x1,...,21) € [0,1]" : Zacj € C’O,ij eC,.. .,ij € Cn}),
(m)

i=1 (1)

for all Cy,...,Cn € B[0,1]. However

4,8, ({(z1,.. ., %) €10,1] 1 Z-T] € Co}) = qx(Co) = 61(Co)

where the first equality follows from (C3) whereas the next one is true because of (Cy).

Therefore

X, A1,y dm (Co X -+ X Cp) (3.14)

= 61(Co)gpy,..5. ({ (@1, 2) € [0,1]F: Y 7, € 1y, Y 35 € Ci})
(1) (m)
= 01(Co)qas,...,a,,(C1 X - - x Cp,)
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for all Cy, Cy,...,Cp, € B[0,1].

Now let n > 1and R = Dy X --- x D, with D; € X fori =1,...,n. If D; = X for
all s = 1,...,n, (3.13) is evident. If at least one D; C X, let Ay,..., A, be the distinct
elements different from X of the sequence D1, ..., D,; set ry to be the number of times X
appears in the sequence Dq,..., D, and, for i = 1,...,m, let r; be the number of times the

set A; appears in the same sequence. Then

Hn+1 (R X X)

_ To+1
= yo .

[0,1]m+1 .. y:nqu,Al,...,Am (dyo A dym)

= [0 1]m yil e y’:‘nqul ..... Am (dyl e dym)

= Hn (R)

where the last two equalities follow from (3.14) and the definition of p,. This shows that
(3.13) holds and concludes the proof of the lemma. o

3.15 Lemma. The probability measure p on (X, B*>) is exchangeable.

Proof. Because of the previous lemma, exchangeability for u follows if we show that, for all
n>1and Dq,...,D, € X,

/Ln(Dl X - X Dn) = ,U'n(DU(l) X=X Dg(n))

for every permutation o = (o(1),...,0(n)) of (1,...,n). But this is true since p, is ex-

changeable. o

3.16 Remark. It is now easy to see that a measure p on (X, X'*) is exchangeable if
and only if there is a class Q of probability measures indexed by finite sequences of distinct
elements of X’ and satisfying the consistency conditions (Cy) — (Cy) such that, for all n > 1
and D,...,D, € X,

w(Dy X - x D, x X*)

is equal to the right member of (3.3). The previous lemmas prove the sufficiency part. To
prove that the condition is also necessary let p be exchangeable and define the elements of

Q by means of (3.1) where v is the unique de Finetti measure of p. ©

Since p is an exchangeable probability measure on (X, B%), it follows from de Finetti’s

Representation Theorem that there exists a unique probability measure v on (P,P) such
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that, for alln > 1 and all C4,...,C, € X,

maxMx@xx»=Lﬁmmmm

3.17 Lemma. Foralln>1 and Ay,..., A, distinct elements of X,

v({p € P: (pa,(p), .-, 94,(p)) € C}) = qa,,..,4,(C) (3.18)
for every C € B"[0, 1].
Proof. Fixn > 1 and Ay,..., A, distinct elements of X'. For all kq, ..., k, integers,
E,[¢l, - 03]

= [ P (A) - (An)v(dp)
= pu(A; X -+ X Al(kl times) X « -« - X Ay X - X Ay (ky, times))

= [0,1] yll . yn"qu---An(dyl cdyy).

Since the probability distribution of (p4,, ..., pa,) is completely determined by its moments,

this shows that it must be ga,. 4, and proves the lemma. o

3.19 Lemma. There is a unique probability measure v on (P, P) for which (8.18) holds.

Proof. Let 7 be another probability measure on (P, P) for which (3.18) holds: let fi be the
exchangeable probability measure on (X, X'*) defined by setting, for all A € X,

= /P P> (A)v(dp

Then, for alln > 1 and Dy,..., D, € X,
fi(Dy x - -+ D, x X*)
=/ [I»(D))i(d
Pzt

= y']’:l “ e y:nqul,,Am (dyl .« .. dym)
[0,1]™

= [, ITp0ovian)

= (D1 X -+ Dy x X*)
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where Ai,..., A, are the distinct elements of the sequence Di,..., D, and r; counts the
number of times the set A; appears in the sequence for i =1,...,n.

This implies that i = p. Since the de Finetti measure of p is unique, 7 = v. o

The last lemma concludes the proof of Theorem 3.2 and settles affirmatively the main
question of the section: given a family Q of probability distributions indexed by finite
sequences of distinct elements of X and satisfying consistency conditions (C;) — (C4) there
is a unique probability measure v on (P, P) for which (3.18) holds.

When applying Theorem 3.2 it is often handy to define the elements of Q by first defining
gas,..A, When A; ... A, is a finite partition of X with elements in X, that is a finite
measurable partition of X, and then using the hoped for consistency conditions (C;) — (Cy)
for defining the remaining elements of Q

In fact let

= {qp,,. B, :n>1and By,..., B, measurable partition of X}
and assume that

(C7) For all n > 1 and By, ..., B, measurable partition of X, gp,,. 5, is a probability
measure on ([0, 1]", B"[0, 1]) such that, for every C' € B"|0, 1],

qB,,...,B, C) = 4B, (1yBo(n) (00)
where 0 = (0(1),...,0(n)) is any permutation of (1,...,n) and
0C ={(To1),- - Zom)) € [0,1]" : (21,...,2,) € C}.
(C5)
gx = 9.

(C%) Let n > 1 and By,..., B, be a finite measurable partition of X. if Bf,..., B/ is a
finite measurable partition of X finer than B,..., B, let

for i =1,...,n. Then, for every C € B"[0, 1],

qu,...,Bn(C) = C]Biy B! ({(.Tl,..., E [0 1 Z.’E],...,Z.’L'j) € C})
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(C}) Let {A,} be a sequence of elements of X' decreasing to the empty set. Then, for all
a #0,
lim ga,,4¢ ({(y1,92) € [0, 17 : y1 < a}) = 6o((—o00, al).

n—oo

Now, given n > 1 and any finite collection A = {4, ..., A, } of elements of X, suppose
that V = {B, ..., B,},m > n, is a finite measurable partition of X such that:

(1) (n)

where (i) = {j € {1,...,m} : B; C A;} for i = 1,...,n. We introduce the measurable map
dav ¢ [0,1]™ — [0, 1]" defined by setting, for all (yi,...,ym) € [0, 1]™,

¢A;V((y1> .- -aym)) = (%yj’ SRR gyj)

with the convention that >y y; = 0if {j € {1,...,m} : B; C A;} = () for some i =1,...,n.

If n > 1 and Aq,...,A, are distinct elements of X, let By,..., By be a finite mea-
surable partition of X generated by Aj,...,A,; that is a class of sets obtained by taking
all the possible intersections of the sets A; and their complements, ¢ = 1,...,n. By con-
sidering ¢4, a,:B,...By @ a random vector which maps [0,1]" into [0,1]", the probabil-

By When

..........

.....

C € B"[0,1], we define

941,42 (C) = By,..By (241, 4,:81,..,3 (C))- (320)

Hence, by means of the class Q' whose elements satisfy (C!)— (C}) we generated a class Q
whose elements, defined by (3.20), are probability distributions indexed by finite sequences

of distinct elements of X.
3.21 Lemma. The elements of the class Q satisfy consistency conditions (Cy) — (Cy).

Proof. In order to prove that (C) is satisfied consider, for example, a measurable partition
Bl,BQ,Bg,B4 of X and let A1 = B1UBQ and A2 = B1 UB3, note that Bl,...,B4 1s a
partition generated by A, As. Then, for any rectangle C; x Co, with C; € B[0,1] fori = 1,2,

4a1,4,(C1 X C2) = g, (DA} a5, (CL X C2))

.....
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since ‘/52},142;131,...,134 (Cy x Cy) = ¢;121,A1;Bl,...,34(02 x (). Following a natural extension of the
previous argument, one proves in complete generality that the elements of Q satisfy (C}).
Property (Cs) is the same as (C%)
For proving that (C3) is satisfied, let n > 1 and Ay, ..., A, be distinct elements of X.
If Dy, ..., Dy is a measurable partition of X such that A; = Uy Dy, for ¢ = 1,...,n, then
a measurable partition By, ..., B, generated by A;,..., A, is not finer than the partition
Dy, ..., Dy. We need to prove that, for all C € B"[0, 1],

qas,....4, (C) (3.22)
= qpy,...0, { (21, ..., 71) € [0,1]* Zx],...,gaﬁj) eC})

=d4D,,...Dy ((b;l},...,An;Dl,...,Dk (C)).
However, by definition,
A1, (C) = 4By,.Bw (Dar . iy, (C))
and from property (Cj}) it follows that
qBy,...,.Bm (E) = QDl,...,Dk(QSIE},...,Bm;Dl,...,Dk(E))

for all E € B™[0, 1]. Hence, (3.22) follows after checking that

Finally, (C4) is satisfied if we show that, for every sequence {A,} of elements of X

decreasing to the empty set,
Jim g4, ([0, a]) = 6,([0,a]) =
for all a # 0. However, by (3.20),
¢4,((0,a]) = ga,,45({(y1,32) € [0, 1] : 1 < a})
so that (Cy) follows from (Cj). o

The previous Lemma and Theorem 3.2 show that the class Q' of probability distributions
indexed by the finite measurable partitions of X define a probability measure v on (P, P)
when (C7) — (C7}) are satisfied; it is a simple exercise to show along the lines of Lemma 3.19

that such a v is uniquely defined by the elements of Q'.
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4 The Dirichlet process

As a first example of a probability measure on (P,P) constructed through the approach
described in the previous section, we consider the celebrated Dirichlet process introduced by
Ferguson (1973) as a flexible prior for Bayesian nonparametrics .

We begin with the definition of the Dirichlet distribution. For n > 2 and ¢ = 1,...,n,
let o; > 0 and such that >77' ; a; > 0, and set Z;,...,Z, to be independent real random
variables with distribution Gamma(as, 1),...,Gamma(ay, 1), respectively, where we assume

by convention that Gamma(0, 1) is the point mass at 0.

4.1 Definition. The probability distribution on ([0,1]", B"[0,1]) of the random vector
Z Zy,

( ey )
is said to be Dirichlet with parameters (o, ..., a,) and denoted by D[-; aq, . .., ).
Note that D[;ai,...,q,] is singular with respect to the Lebesgue measure on

([0,1]™, B"[0,1]); however, if o; > 0 for all # = 1,...,n, then the probability distribution
induced by D[-|ay, . .., a,] on ([0,1]"7%, B"71[0, 1]) via the orthogonal projection which drops
the kth coordinate, with £ € {1,...,n}, is absolutely continuous with respect to the Lebesgue

measure and has density

dal,---,an (yla e Ye—1,Yk+1y - - yn)

L3 a; i e
- (717}1(;[ H yiz 1][1 - Z yl] k l‘lsn—l((yla'"ayk—layk-l-la'"ayn))
i=1 -\ Qi) et nyizk) (i€{1,...n} ik}
where
n—1
Sn_1 :{(tl;---,tn—l) € [071]n—1 :t;>0fore=1,...,n—1and th < 1}
i=1

is the n—1-dimensional simplex. For n = 2 and k& = 2 this is the density of a Beta distribution
with parameters (aq, o).

Let now « be a finite measure defined on (X, X). For all finite partitions By, ..., B, of
X such that n > 2 and B; € X, for « = 1,...,n, that is for all finite measurable partitions
of X, define a probability measure gg,... g, on the Borel o-field B"[0, 1] of [0,1]” by setting

g8y,..8,(C) =D[C;a(By),...,a(By)]. (4.2)

for all C € B"[0, 1]. Moreover set,
gx(C) = 6:(C) (4.3)
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for all C € B™([0,1]). Let Qf, be the class of probability distributions defined by (4.2) and
(4.3).

4.4 Theorem. The elements of QY satisfy (C7) — (C}).

Proof. (C]) and (C) are obvious. (C%) follows from the well known additive property of
the Dirichlet distribution. Finally, (C}) is satisfied if we show that, for every sequence {A,}

of elements of X’ decreasing to the empty set,

lim g4, ac ({(y1,92) € [0,1]* : y1 < a) =60([0,a]) =1 (4.5)

n—yco
for all a # 0. However, if a(Ayx) = 0 for a given N > 1, then ga, 4:([0,a] x [0,1]) =1 =
d0([0,a]) for all n > N, so that (4.5) follows trivially. When a(A,) > 0 for all n, notice
that the distribution induced by ¢4, 4. on ([0, 1], B[0, 1]) via the projection which drops the
last coordinate is the Beta distribution with parameters (a(A,), a(AS)) : therefore it follows

from Markov inequality that,

a(Ay)
c 1Hh>1-—
QAn,An([Oaa] X [Oa ]) = xa(X)
for all a # 0 and all n. This implies (4.5) since lim,,_,o, a(A,) = 0. o

4.6 Definition. Given a finite measure o on (X, X), the unique probability measure
determined by the class QY on the space (P, P) is called Dirichlet process with parameter o
and denoted by D,,.

4.7 Example. Let us consider the case where X = R. If —co <21 < ... <z, < 00 are

n real numbers and
Al = (_Ooaxl]a A2 = (xla $2]7 .. aAn = (wn—laxn]a

set
n

F(ﬂﬁl)=@AnF(@)=@A1+@A2,---aF($n):Z@Ai-
Then, for 0 < y; <... <y, <1, -
Do(F(z1) <1y -5 F(T0) < yn)
=Da({fp €P :p(A1) <u1,... Zp ) < Yn})

F(04(?1?)) .
I(a((=o00, 1)) (a((21, 72])) - - - T(a((2n, +00)))

. / o)l yama) -
{(21020)E[0,1]7521 .02 21 <Y1 vy <t}

o (2pe1 — Zn)a((wn—l,zn])—l(l — Zn)a((mn,oo))—ldzl eodz,,.
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In particular, for z,y € [0, 1],

I'(a(X)) /y Lol(-
I(a((=o0, 2])I'(a((x, +00))) Jo
that is F'(z) has Beta distribution with parameters (a((—o0,z]), a((z, +00)). Therefore, for

Dy (F(z) <y) = o) =11 — g)el@teo)-1q,

instance,
a((—o0, 2])

BF(@) = 5

<

In the rest of the section we want to present a few basic properties of the Dirichlet
process which make it an appealing prior distribution for Bayesian nonparametric statistics.
We therefore consider an infinite exchangeable sequence of random variables {X,} with
values in X and we assume that, given P = p € P, they are independent and identically
distributed with probability distribution p, where P is a random element of (P,P) with
probability distribution D,. It is well to point out that, according to our definition, P is
the only random probability measure for which the distribution of (P(By),...,P(B,)) is
Dirichlet with parameters (a(By),...,a(B,)) for every measurable partition By,..., B, of
X. In particular, if B € X and «(B) > 0, P(B) has Beta distribution with parameters
(«(B), a(X) — o(B)).

As we showed in Section 6.2, the right framework where to examine inferential questions
regarding the sequence {X,} and the random probability distribution P is the statistical
model (X* x P, X* x P, w) where 7 is defined as in (2.1) with v = D,.

Let us begin by proving that the marginal probability distribution of X is the measure

o normalized.

4.8 Theorem. For all A € X,

Proof. Fix A € X. Then,

alA
n(4) = 7(X € 4) = [ p(A)Paldp) = EP(A)] = 22
o
For all n > 1 and (z1,...,2,) € X" we can easily compute the posterior distribution
Do(:| X1 = 21,...,X, = x,) whose existence was established in Section 6.2. Recall that, for

x € X, J, indicates the point mass at x.
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4.9 Theorem. For alln > 1 and (z1,...,2,) € X",

'Da(-‘Xl =21,...,X, = xn) = DOA-I-E? 5.

Proof. We consider only the case n = 1; the general case then follows by induction on n.

Let 7; € X. In order to prove that Dy (-|X; = x1) is Days,, , it is enough to show that,
for all £ > 2 and all finite measurable partitions By, ..., By, the probability distribution of
the random vector(pp,, ..., pp,) induced by Do(-|X; = z1) on ([0,1]%, B*[0,1]) is Dirichlet
with parameters (a(Bi) + 04, (B1), . .., a(Bg) + 64, (Byg))- This is equivalent to show that the
conditional probability distribution of (pp, (P),..., ps, (P)) given X; = x,, is Dirichlet with
parameters (a(By) + 8z, (B1), - - ., a(Bg) + 04, (Bg)). In fact, for all C' € B¥[0, 1],

Da[(pBu REX ka) € C|X1 = xl]
T[X® x{peP: (p5,(p), ..., 05/p) € C}X1 =z
= W[(@Bl(P)v SR ka(P)) € C|X1 = .1'1]

where the first equality follows from the definition of D, (-|X; = 1) whereas the next equality
follows from definition of P.

Let k > 2, By,..., By be a finite measurable partition of X and A € X. Set BY = AN B
and B! = A°N By, for s =1,...,k. Then, for all (t1,...,%) € [0, 1],

k
mlpp, (P) < ti,...,08,(P) <tg, X1 € Al =Y 7wlpp, (P) < t1,...,08,(P) < ty, X1 € B]
s=1
(4.10)
For s =1,...,k, consider
mlpp, (P) < ta, ..., 5, (P) < 1y, X, € BY] (4.11)

= 7lppo(P) + pp1(P) <1, ppo(P) + pp (P) < 1, Xy € B

Xoo X{peP:thl) (p)+@B% (p)<ta P B (p)erBllc (p)<tr}
7lX1 € Bllom(P)s- ., 05p(P), 95y (P -, oy (P)ldm
= p(BY{)Dy(dp)

{pEPwB(l)(p)erB% (p)<ta P 0 (p)+pB}9 (P)<tr}

where the first equality follows from the fact that pp, = ppo + g1, ..., 0B, = pBo + P51,

whereas the last one is true because, for all p € P the conditional probability distribution of
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X, given P = p is p; therefore

m[ X1 € BO|@B?(P)a---a@Bg(P)a@B}(P)a---a@B;(P)]

E[r[X, € BY|Plppo(P),-- -, 08 (P), pp1 (P), -, pp1(P)]
Elpp (P )‘@B?(P)a---a@Bg(P)a@B}(P)a---»@B}C(P)]
pio(P)

almost surely with respect to .

If (B?) =0, Dy[{p € P : p(BY) = 0}] =1 so that the last quantity in (4.11) is equal to
zero.

If a(BY) = a(X), Dy[{p € P : p(B?) = 1}] = 1 and in this case the last quantity in
(4.11) is equal to 01 ([0, ts]).

If0 < a(BY) < a(X),set 8 =a(BY),ifi=1,...,k, B =a(BL,),ifi=k+1,...,2k,
and C = {i € {1,...,2k} : B; # 0}. Since a(B?) < a(X) there is a j # s such that 3; # 0 :
let C*={ie€C:i+# j}. Finallyset f = 5;+1ifi =sand 5 = g3;ifi € {1,...,2k},i # s.
Then,

p(B;)Da(dp)

/{pEP:pBo(p)+PBl( )<t1,..s PBO(PHPBI( )<t}

,31—1 P Bi—1 .
/ HZECF(IB’L [H Z Z) H d '

zEC ieCc* ieC*
_ /3 Bi—1
= ) 2;)P dz;
/ HzECF ﬁ ZEI_CI* iEZC* Z ig* Z
_ afs Dl (e, € 0,11 2 s < o Tor € {1, kP B B3
= Z((X))D[{(Zl, ceey Zk) € [O, ].]k 21 S tl, <9 Rk S tk}, (X(Bl), ceey O[(BS) + ]_, ceey Oé(Bk)]

E= {(217"'7Z2k) € [0’ 1]2k:
z1=0if 5, =0, fOI‘lE{l,...,Qk‘}, andzi-l-szSti, fOIiE{l,...,k}}.

Note that the last equality follows from the well known additive property of the Dirichlet
distribution.

Therefore, whatever the value of «(B?), for s =1,...,k,

W[pBl (P) S tla ey ka S tkaXleBg]
a(By)

= a(X) Di{(z,...,2) €0, l]k c21 <ty 2z <tp b a(Br), .., a(Bs) + 1, 0 B)l;
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this and (4.10) imply that

(0B, S tla'--vak <, Xq € A

= Z )D[{ 21,...,Zk) S [0, ]_]k 121 < tl, ce ey Rk < tk};aS(Bl),... ,Ojs(Bk,)]

sla

where o(B;) = a(Bs) + 1 if s = i whereas o(B;) = a(B;) if s # i.

However, for all s=1,...,k,
a(B?) 1 ol di
aX)  a(X) /AﬂBs (dz)
so that
W[pBI(P) Stla"'7ka(P) Stk,Xl EA] (412)
i S S 1
:ZD[{[O,tl] XX 0t (B), e (B g /AHBS a(dz)
= 21 (X /Aﬂ 5 DI[0, 1] x -+ x [0, t]; &(By) + 05(B1), - - ., a(Bg) + 0.(Bg)]a(dx)

—X)/AD[[O,tl] x oo x [0, t]; (By) + 65(By), - - ., a(Bx) + 6, (By)]a(dx).

Being (4.12) true for all A € X and all (1,...,%) € [0,1]* this shows that the con-
ditional distribution of (pg, (P),...,ps,(P)) given X; = =z is Dirichlet with parameters
(a(B1) 4+ 04(B1), - .., a(Byg) + 0,(By)) since the probability distribution of X is the measure

a normalized, as follows from Theorem 4.8. Therefore D, (-|X; = z) is Dyys, - o

The next result shows that if the random probability P has probability distribution D,,
then P is discrete almost surely. Before stating the theorem, note that for any given p € P
the set {x € X : p({z}) > 0} € X since X is separable; moreover p is discrete if and only
if p({x € X : p({z}) > 0}) = 1. One can in fact prove that the set {p € P : p({z € X :
p({z}) > 0}) = 1} of all discrete probability distributions on (X, X’) is an element of P.

4.13 Theorem.

Do({peP:p({x € X:p({z}) >0})=1}) =1. (4.14)

Proof. Let us consider the function P({X1}) : X**xP — [0, 1] which maps ((z1, xs,...),p) €
X>® x P in p({z1}). It is a matter of technicalities to show that P({X;}) is measurable;
therefore we may compute 7(P({X;}) > 0).
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In fact,

T(P{X1}) > 0) = ﬁ [ AP > 01X = 2)a(dn) (4.15)

since the marginal probability distribution of X; is the measure o normalized. Given
X1 = z1, the conditional probability distribution of P is D,s, and therefore P({z;}) has
distribution Beta with parameters (a({z:}) + 1, a(X) — a({z1}); hence P({z}) is strictly
positive with probability one. This shows that 7(P({X;}) > 0) = 1.

However,
A(P{X:)}) > 0) = [P T(p({X1}) > 0|P = p)Da(dp). (4.16)

But, given P = p, the probability distribution of X is p so that

m(p({X1}) > 0|P = p) = p({z € X : p({z}) > 0}). (4.17)
Equations (4.15), (4.16) and (4.17) imply (4.14.) o

The fact that P is discrete with probability one when P has probability distribution D,
is sometimes considered as a drawback to the use of the Dirichlet process for applications. As
such, this is an ill-conceived criticism. Notice, for instance, that any continuous probability
distribution on the real line gives probability one to the set of irrational numbers; but this
does not stop applied statisticians from using continuous distributions for the analysis of
rational data. In point of fact Ferguson (1973) remarks that the support of D, is the
set of all probabilities on (X, X’) whose support is contained in the support of a; a lot of
probabilities that are not discrete may well belong to this set. In any case, in the next section
we will introduce a probability distribution on (P, P) which may select with probability one

continuous probabilities on (X, X).

5 Tailfree processes

The Dirichlet process considered in the previous section belongs to a very general class of
probability distributions defined on (P,P) which were named tailfree processes by Fabius
(1964); they were extensively studied by Freedman (1963), Ferguson (1973) and Doksum
(1974) among others. The aim of this section is to construct tailfree processes as probabilities
on (P, P) using the method described in Section 3. In addition to the Dirichlet process, as
a special instance of a tailfree process we will also get the Polya tree process introduced by
Mauldin, Sudderth and Williams (1992) and Lavine (1992,1994) and studied in the next

section.
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Let {V,,} be a sequence of finite measurable partitions of X, that is finite partitions
whose elements belong to X. In the rest of the section, for all m > 1, we will denote with
{Bm,---Bmpk, } the partition V,,; however the order of appearance of the sets B,, ; is not

going to matter.

5.1 Definition. A sequence {V,} of finite measurable partitions of X is called a tree
of partitions of (X, X) if:

(1) Vo ={X};
(ii) for allm > 1, V,, is finer than V,, _1;

(iii) the o-field generated by U,, Vi is X.

Before proceeding any further we need a few useful notations.

If Be€ V,, and n < m, we call predecessor of B at level n the unique set ps(B,n) € V,
such that B C ps(B,n). Note that ps(B,m) = B; moreover if C € V,,D € V, with
k <n <m, and ps(B,n) = C while ps(C, k) = D, then ps(B, k) = D. That is:

ps(B, k) = ps(ps(B, n), k). (5.2)
For A € X and m > 1, we set
En(A)={B€V,: BﬂA # (0}.

Finally, for all z € X and m > 0 let &,,(x) be the unique set in V,,, which contains z; clearly
ps(é-m—l—l(x)a m) = gm(x)

Tree of partitions exist if and only if X’ is countably generated. Moreover, the following
lemma describes how to represent the elements of X when {V,} is a tree of partitions of
(X, X).

5.3 Lemma. Let {V,} be a tree of partitions of (X, X). Then, for each A € X,

A= U B

n Be&n(A)

Proof. Let
F={AeXx:A=(\ U B}

n BEE,(A)
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We show that F is a monotone class containing the field G whose elements are the empty
set and finite unions of sets of U, V,; since G generates X', the Monotone Class Theorem
(Ash (1972), Theorem 1.3.9) guarantees that F = X.
First notice that, for all A € X, the sequence of sets {Upeg, (1) B} is decreasing with n.
Now, let A be a finite union of elements of U,, V,,; then there is an m > 1 such that A is

a finite union of elements of V,,. Therefore, for all n > m,

A= U B
BeEn(A)

and this implies that

Therefore F contains G.
Now let {A,,} be a sequence of elements of F monotonically increasing to the set A.
Then

A=Unt U B=N U B

m N BeEn(Am) " Be&(,, Am)
and the last equality proves that A € F. Analogously, if {A,,} is a sequence of elements of

F monotonically decreasing to the set A, then

A=A U B=N U B

m 1 BeEn(Am) " Be&n(),, Am)

and the last equality proves that A € F. Therefore F is a monotone class. ¢

Given a tree of partitions we may define a probability on (X, X') by specifying the values
of the conditional probability of each element of U,,, V., given its predecessor in the tree. We
give a detailed description of the procedure since along the same idea one can also construct

random probability measures on (X, X'), that is probability distributions on (P, P).
Let {vym 5 :m >0,B € V,,} be a double sequence of numbers such that:

(t1) vm,s € [0,1] for all m > 0 and B € V.
(tg) ’Uo,x =1.

(t3) For allm >0 and B € V,,,

Z Um+1,0 = L.

Ce€m+1 (B)

27



(t4) For all sequences {B,,} decreasing to the empty set and such that, for each n > 0, B,
is union of sets in V,,,

Jim > JTvipssi =0

{B€Ey(By)} i=1

For all sets A belonging to the field G whose elements are the empty set and finite unions
of sets of U,, V,, define

p(A) = i%f Z H Vi ps(B,i)- (5.4)

BEE,(A) i=1
Note that if A € G is not empty there is an m > 0 such that A is a finite union of sets in
Vom; using (t3) it thus follows that

n m
Z Hvi,ps(B,i) = Z Hvi,ps(B,i)

BeEa(A) i=1 BEE,(A) i=1

for all n > m. Therefore the infimum appearing on the right side of (5.4) is attained at
n = m since the sequence {ZBegn(A) I, vi,ps(B,i)} is decreasing with n.

It is now easy to check that the set function p : G — [0, 1] defined in (5.4) is a probability
on G which is countably additive because of (¢4). Therefore p can be extended to X in a unique
way by means of Charatheodory Theorem (Ash (1972), Theorem 1.3.10). In particular,

because of Lemma 5.3,
p(A)=lim > pB)=lim > J[[vipssa
Be&n(A) Be&np(A)i=1

for all A € X.

5.5 Definition. A probability distribution T on (P, P) is said to be tailfree with respect
to a tree of partitions {V,} if there is a sequence of random variables {V, p:n > 0,B € V,,}
defined on a probability space (2, 0, \) with values in ([0, 1], B[0,1]) such that the families of
random variables {V1 g : B € V1},{Va,p : B € Vy},... are mutually independent and, for all
m > 1 and C € B|0, 1]F=,

m m

T((me,u ey meJCm) € C) = )‘((H Vi,PS(Bm,l,i)’ ) H V;,PS(Bm,km,i)) € C)

i=1 i=1

If P is a random element of P with distribution 7 and 7 is tailfree, this essentially means

that the families of random variables
{P(B|ps(B,0)): B € V1},{P(B|ps(B,1)) : B € Vy},... (5.6)
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are mutually independent. With the words of Doksum (1974), “when the sets of one par-
tition, say V,,, are divided into new sets for the next partition V,,,, the relative random
probabilities assigned to this new sets are independent of the corresponding relative random
probabilities assigned to the sets in other partitions.” In fact, if P is such that the families
(5.6) are independent, then its distribution 7 is tailfree since, for m > 1 and B € V,, one
can define Vg ,,, = P(B|ps(B,m — 1)).

5.7 Example. A Dirichlet process D, on (P,P) is tailfree with respect to any tree of
partitions {V,,}.

Given a tree of partitions {V,,} of (X, X) we may construct a probability distribution on
(P, P) tailfree with respect to {V,,} via Theorem 3.2. In fact, let {V,, 5 : m > 0,B € V,,,}
be a sequence of random variables defined on a probability space (£2,0,)). Assume that,

with probability one with respect to the probability A :
(T1) Vi €[0,1] for all m > 0 and B € V,,.
(TQ) %,x - 1

(T3) For allm >0 and B € V,,,
Z Vm+1,C == 1

Ce€m+1 (B)
Moreover assume that:

(Ty) For all sequences {B,,} decreasing to the empty set and such that, for each n > 0, B,

is union of sets in V,,,

n
Jim Y]] EalVipssal =0
BEE, (By) i=1

where E, denotes the expected value computed according to A.

(T5) The collections of random variables
{‘/l,B :Be Vl},{‘/Q,B :Be Vg},
are mutually independent.

For all m > 0, we define on ([0, 1]¥=, B*= [0, 1]) the probability distribution

m

qu,l,---,Bm,km (C) = )\[(H ‘/i,ps(Bm,l,i); R H V;',ps(Bm,km ,z)) € C] (58)
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for C € B0, 1].

The next lemma shows that an additive property holds for the probability distributions
defined in (5.8).

5.9 Lemma. Let r > m > 1. Then, for all C € BF[0,1],

QBm,la---aBm,km (C) = QBT,I 7---;Br,k»,‘ (¢§Tln,1,...,Bm’km ;BT,IS"'7B7‘,kr (C)) (510)

Proof. Fix C € B*"|0,1].

Let us first consider the case where r = m + 1. Note that

—1
QBm+1,1,...,Bm+1,km+1 (¢Bm,1;---;Bm,km§Bm+1 1y 7Bm+1 Emt1 (C))

= qu+1,11---7Bm+1,km+1 ({(xla . ka+1) € [0 1 km+1 : Z Ljyenny Z xj) € C})
(km)
m+1 m+1

= )\[(Z H ‘/;’ps(Bm-H,j’i)’ - Z H V:I’s m+1J1Z € C]
(1) =1 k) i=1

where (s) = {j € {1,...,kms1} : psS(Bm+1,j,m) = B} for s = 1,..., kp,. The first equality
follows from the definition of the map ¢Bm,1,...,Bm,km Bttt Bt 1 11 whereas the second one

holds because of the definition of g5, ., ,,..B

Bt Lo 1 Now notice that, for s =1,..., k,,,

m—+1

m
Z H V:PS Bim+41,5,1) = va+17p3(3m+1,jﬂm+1) H ‘/i:PS(Bm-H,jﬂi)
(s) 1=

(s) i=1

m
= Z Vm+1’Bm+1=j H ‘/;’ps(Bm-H,j 1)
(5) i=1

= H V ps(Bm s,’L ] Z Vm+1 Bm+1 ¥
(s)

= I Vips(Bune)
i=1
where the second equality holds because ps(By,+1,5, m + 1) = Bpy1,5, the next one is true
since ps(Bpt1,5,1) = ps(Bm,s, 1) for i < m as follows from (5.2) and, finally, the last equality
is implied by (7}). Therefore
(@)

QBm+1,1,...,Bm+1,km+1 (¢Bm,1a---vBm,km;Bm+1,17---,Bm+1,km+1

= )‘[(H V;;PS(Bm,l,i)’ RS H V;',PS(Bm,km,i)) € C]
=1

=1
= qu,l 7---;Bm,km (C) °
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This proves the lemma when r = m + 1; for » > m + 1, the lemma follows by induction

on r — m after checking that

dvnv, (C) = 65, _ v, (991.v,_.(C))-

We are now ready to define the elements of the class
Qr ={qa,..4, :n>1and Ay,..., A, distinct elements of X'}

which will determine, via Theorem 3.2, a tailfree probability distribution on (P, P).
Notice that, for all A € X, the sequence {3 peg, (a) [1i=1 Vips(si)} is bounded between 0

and 1 and monotonically decreasing with n. In fact for all n > 0

n+1 n+1 n
Y I Vipssa) < > II Vipsziy = D I Viwsma)
Be&p4+1(A) i=1 BEVy41:ps(B,n)€ER(A) 1=1 Be&y(A)i=1

where the last equality follows from (73). Therefore the limit of the sequence
{ Z H V;,ps(B,i)}
exists on a set with A probability one.
For alln > 1 and Aq,..., A, distinct elements of X', we define
qu:---;An (C) = )\((hrgn z H ‘/;,pS(B,i)) (RES) li'%n Z H ‘/;',ps(Byi)) € C) (511)
BEEm (A1) i=1 BEEn(Ay) i=1
for C' € B"[0,1]. It is again a consequence of (73) that, when Aq, ..., A, belong to a partition
of the tree {V,,}, the previous definition is consistent with (5.8).

5.12 Theorem. The elements of Qr satisfy (C1) — (Cy).

Proof. Property (C;) is trivial whereas (Cs) follows immediately from (7).
Let now Ay,..., A,,n > 1, be distinct elements of X and suppose that D;,..., Dy is a
finite partition of X with elements in X and such that
A =UDj,...., Ay =JDj
(1) (n)
where, as usual, (s) = {j € {1,...,k}: D; C A;} for s =1,...,n. Property (C3) is proved
if we show that, for all A, € {Aq,..., A,}

ligln Z HV;,IJS(B,Z') = Z [h,{}l Z HVz’,ps(B,i)] (5.13)

BEER(A,) =1 jE(s)  BEEm(D;)i=1
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on a set of A probability one. It is in fact enough if we show that (5.13) holds for A; = Dy U D,
with Dy, Dy € X disjoint. Note that in this case, for all m > 1,

Y I Viess

BEEm(A,) i=1

= > IIViesa+ 2 I Viesmi) — > LI Vips(.i)

BEER(Dy) i=1 BEER(Dy) i=1 BEE(D1) () Em(Da) =1

therefore, in order to prove (5.13), we need to show that

lirgn Z H Vips(pa) =0
BEER(D1) [ Em(D2) t=1

with A probability one.
Notice that,

Nl U Bl < { U BRI U B}

™ Be€Em(D1) () Em(D2) m Be&m (D) m Be&m(Ds2)
= Di(\D;
= 0

where the next to the last equality follows from Lemma 5.3. Therefore, if for all m > 0
we set Cp = Ugee,, (1) e (0, B> We get a sequence of sets {Cy,} decreasing to the empty
set and such that C,, € V,, for all m > 0. Let us now consider the sequence of random
variables {3} gee,. (c,n) [Tim1 Vips(n,y} Which converges to 0 in mean because of (7}) and (75).
Since Cp,11 C Cy, for all m > 0, ps(B, m) € &,(Cp,) if B € &,,41(Cpt1); therefore

m+1 m+1 m
> I Vipssiy < > II Vieszy = > I Viessa)
B€£m+1(cm+1) 1=1 BEVm+1:ps(B,m)E£m(Cm) =1 Begm(cm) =1

where the last equality follows from (73). This shows that the sequence
{ X IDVipswar}
BEEM(Cp) i=1

is monotonically decreasing with m and it thus converges with A\ probability one; the limit
must be 0 since the sequence is bounded between 0 and 1 and converges in mean to 0. Hence

m

)\[IITIHII Z H Vti,ps(B,i) = 0] = 1

BEEm(D1) [ Em(D2) =1

and thus (5.13) follows when A, = D; U Ds.
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Finally let { A, } be a sequence of elements of X’ decreasing to the empty set. Fix z € (0, 1];

then Markov’s inequality implies that, for each n,

qa,([0,2]) 2 1 - %/Olthn(dt). (5.14)

However

1 m
[ taa (@) = Elim 3 ] Vipssol

BEEm(Ay)i=1

< E/\[ Z H ‘/i,ps(B,i)]

BEE,(Ay) i=1
= X I EalVigssa) (5.15)
Be&n(An)i=1
where the last equality is true because of (75).

For all n > 0 set C,, = Upeg,(4,) B; then C, € V,. Moreover {C,} is a sequence
of sets monotonically decreasing to the empty set. In fact, suppose that y € Cp41; then
n+1(y) N Apyr # 0 and this implies that &.(y) N A, # 0 since ps(§nt1(y), n) = &a(y) and
Apni1 C A, Therefore &,(y) € E,(An) and y € C, which proves that C, 1 C C,,. In order
to verify that N, C, = 0, suppose that this is not true and let y € N, C,. Then, y € C,
for all n. Fix k¥ > 0 and consider Ay; since y € Cy, &(y) N Ax # 0 and this implies that
Em(y) N Ag # 0 for all m < k because &(y) C &n(y). However if m > k, &n(y) NAm # 0
since y € Cp,, but this implies that &,(y) NAr # 0 because A,, C Aj. This shows that
Yy € ﬂm[UBegm(Ak) B] = Ay for all k; hence y € N, Ax which is a contradiction because this
set is empty.

Therefore the sequence {C,,} satisfies the assumptions of (7;) and this implies that

7zll>nolo Z H E/\[V;,ps(B,i)] = 7zll>nolo Z H E)\[V;,ps(B,i)] =0. (516)

BEE,(Cy) i=1 BEE,(Ay) i=1
Equations (5.14), (5.15) and (5.16) show that lim,, g4, ([0, z]) = 1 for all x € (0, 1]. Therefore
(Cy) is satisfied. o

We now consider a statistical model (X x P, X*® x P, 1) where the probability 7 is
defined as in (2.1) with v = T being tailfree with respect to a tree of partitions {V,}. The
next result shows how to compute the marginal distribution of an element of an exchangeable

sequence {X,} whose de Finetti measure is a tailfree process 7T .

5.17 Theorem. For all A € X,

n

n(d)=lim > ] Ex[Vipssa)-

BeEy (A)i=1
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Proof. For all A € X,

ni(4) =7(Xy € A) = Er(P(4)) = Er(lim > P(B))
Beg,(A)
since A = (,[Upee, () Bl because of Lemma 5.3. However, since 7T is tailfree, the law of
P(B) is the same as the law of [T;_; Vj pyp,) for all n > 1 and all B € V,,. Therefore

ET(liTILn Z P(B)) = E)\[hm Z HV,pS(BZ)]—llm Z HE)\[VypsBz)]

BEE(A) BEEm(A) i= BEEm (A)i=1

where the last equality follows from Monotone Convergence Theorem and (75). o

Tailfree processes are conjugate; if P is a random element of (P,P) whose distribution
is tailfree with respect to a tree of partitions of (X, X'), then the posterior probability dis-
tribution of P is again tailfree with respect to the same tree of partitions. The next results
prove this fact which make tailfree processes useful for Bayesian nonparametrics.

Assume that the distribution 7 of P is tailfree with respect to a tree of partitions {V,}
of (X, X) : we indicate with {V}, g} the double sequence of random variables defined on a
space (2,0, A) whose existence is stated in Definition 5.5. For all n > 0, let £, = {z € X :
[Ty EalVigw) = 0}; set E = U, E,.

5.18 Lemma. For alln >0, E, € X and 7(E,) = 0. Therefore 7 (E) = 0.

Proof. Let n> 1. If x € E,

B\ Vipsten@ )] = 11 BalVipsien@) ] = 11 EalVii()] = 0

i=1 i=1 i=1
where the first equality holds because the sequences {Vi g : B € Vi}, {Vap: B € Va},...
are mutually independent whereas the next to the last equality follows from the fact that
ps(&nsi(z),n) = & (x) for all n > 0 and z € X.
Now suppose y € &,(x) : then &,(y) = &, (). Therefore y € E, if and only if z € E,.
This shows that

E, = U B.
BeVy: E,\[H ‘/’Lps(B z)]

Being a finite union of elements of V,,, F,, € X. Moreover, since the sets of V,, are disjoint,

Tl(En) = Z Tl(B) = Z E)\[ﬁ V;,ps(B,i)] =0

BGVmEA[H?:l Vi ps(B,i)]=0 BeVn:Ey H —1 Vips(B,i)]=0 =1

34



where the next to the last equality follows from Theorem 5.17.

The fact that 7 (F) = 0 now follows easily. o
5.19 Lemma. Let n > 1. For all x € E° and C € B*0,1],

T[(an 17+ PBp g ) € C‘Xl = x] (520)
E/\[IC[(HZ 1 V,PS(Bn 1,8)9 =+ Hz 1 V,PS B, knﬂ))] Hz 1 V,ﬁz(m ]
Hz 1 ExlVigi(@)]

Proof. Fix C € B*»[0,1]; we need to verify that, for all A € X,
7((P(Bur), oo, P(Buy,)) € C, X, € A) = /A IGLICE (5.21)

where, for all z € E°, the expression of h(z) is that of the right member of (5.20). Because of
Lemma 5.3 it is in fact enough to verify that (5.21) holds for A € {J,,, V,,; therefore assume
that A € V,, with m > 0.

Case I: n < m. For each x € A we have that &(z) = ps(A,1) if i < n. Therefore h(z) is

constant for z € A and

/A e M (@)

E)\[IC[(HZ 1 V,pS(Bn 1,8)9 aHz 1 V,pS(Bn kn ,z))] HZT‘L:I V;,pS(A,i)]Tl (A)
Hz 1 E)\[V,ps Aji ]

E)\[IC[(HZ 1 V,ps(Bn 1,8)9 7Hz 1 V,ps(Bn ko ob) )] Hz 1 V,ps A z) H E)\ A ]
Hz 1 E)\[V;,ps Ayi) ] hpa(Ad)

= E)\[IC’ H V,ps (Br,1,)7 -+ H V;',ps(Bn,kn,i))] H V;,ps(A,i)]
=1 =1

= ExlIo[(P(Bp,1); -y P nkn))]P( )]
= 7((P(Bn)s -oer P(Bn,kn)) €C, X, € A)

where the third equality holds because the sequences {Vi g : B € Vi},{Vap: B € Vy},...
are mutually independent.
Case II: m < n. Then:

7((P(Bn1), ..., P(Bay,)) € C, X1 € A)

)

= > 7((P(Bni);-es P(Buy,)) € C, X1 € B)
Be&n(A)

- ¥ /B h(z)m (dz)

Been(A)/BNE
-/, CLICY
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where the next to the last equality holds because of Case I. o

5.22 Theorem. Let T be a tailfree process with respect to a tree of partitions {V,} of
(X, X). Then, for alln > 1 and (z1,...x,) € X",

T(|X1 =T, aXn = .'L'n)
is again a tailfree process with respect to {V,}.

Proof. We consider the case n = 1; the general case then follows by induction on n.
Let x € E° be fixed. For all n > 1 define

E/\ (IC((Vn,Bn,l PIREET Vn,Bn,kn ))Vn,gn(m))
E)\(Vn,ﬁn(w))

for C € BF~[0,1]. It’s easy to check that @, is a probability measure on ([0, 1]¥» B*=[0, 1]).
On the product space

@n(C) =

([0, 1] x [0,1]%> x ..., B¥[0,1] x B[0,1] x ...)

we define the product probability measure () = (1 X @2 X .... Finally, forn > 1 and B € V,,
we set W, 5 to be the (n, B)-projection of [0,1]** x [0,1]¥2 x ... into [0, 1]. Therefore, for
all n > 1, Q, is the probability distribution of (Wy 5, ,,..., Wn 5, ,, ) and the sequences of
random variables

{Wig:BeVi},{Wsp:B e V,y},..

are mutually independent. Moreover, for n > 1 and C € B0, 1],

Q((H Wiyps(Bn,lai)’ Y H maps(Bn,knai)) € C)

i=1 i=1

_ B\l Vips(Bai)s -+ izt Vips(B, 1,0 Tz Vigi)] (5.23)
[Ti21 ExlVigi)]

= TI(P(Bnp); ..., P(Bns,)) € C| X1 = 1]

where the first equality holds because of the definition of @1, ..., @), whereas the next one is
true because of Lemma 5.19.

Since 71 (E) = 0, equations (5.23) show that 7 (-|X; = ) is again tailfree with respect to
{V.}. o

We have seen that Dirichlet processes are tailfree; in fact they are tailfree with respect to

any tree of partitions of X. However there are tailfree processes with properties not shared
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by any Dirichlet process; for instance, a tailfree process may assign probability one to a set of
probability measures on (P, P) which are absolutely continuous with respect to 71. In order
to prove this result, let 7 be tailfree with respect to a tree of partitions {V,} of (X, X); we

assume in the following that the probability measure 7 is such that

n(B) = [ p(B)T(dp) >0,

for all n > 0 and for all B € V,,.
On the product space (X x P, X x P) define the product probability measure 73 x T
and, for all n > 0 and (z,p) € X x P, set

P(n(2))
71(én(2))
For alln > 0, let F,, C X X P be the sigma-field generated by the rectangles D x A where D

is the union of sets in V,, whereas A € P. Since, for alln > 1, V,,,; is a finer partition of V,,,
Fn C Foy; therefore the sequence of sigma-fields {F,} is a filtration of (X x P, X x P).

fn(xap) =

5.24 Lemma. The sequence {f,} is a martingale with respect to the filtration {F,} and

the product measure T X T.

Proof. We leave it as an exercise to prove that, for all n > 0, f,, is F,, measurable. Next,

notice that, for all n > 0, f,, > 0 and, using Fubini,

[, Fa@ P (@) T (dp)
—/ /fnfcpﬁdx) (dp)
= [(X [ falw.p)ra(de)T (dp).

P BeV,
However, if z € B € V,,, &,(x) = B; therefore, for all p € P,

p(B)
71(B)

/B folz,p)11(dz) = 71(B) = p(B).

Hence

JAp>

Therefore, for all n > 0, the expected value of f, is finite and equal to one.

[ e pn (@) Tidp) = [ 3 p(BYT(dp) = [ 17(dp) = 1.

BeV, Bev,
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Now let n > 0, D be the finite union of elements of V,, and G € P. Then
| funa,p)mi(do) T(dp)
DxG
=[] furi@,p)ra(da)T(dp)
:/ Z / fnt1 (2, p)11(dz)) T (dp)

Be&nya(

= (B)T (dp).

BESn+1

where the last equality holds because f,(z,p) = ((B)) forallz € B € V1. But V,, is a

partition of X finer than V,, : hence

Therefore

L BT

Be&p1(D

B))T (dp)

Be&n( D)

JZ
/. / falw, )7 (d2)) T (dp)
Joee?

|

(z, p)1(dx)T (dp).

This shows that

| e pn@)T @) = [ fule,p)(de)T(dp);

since the algebra of rectangles of type D x GG generates F,, the previous equality also proves
that

E(fn-l—l‘fn) = fn

where the conditional expectation is taken with respect to the product measure 71 x 7. Hence

{fn} is a martingale with respect to the filtration {F,} and the product measure 7 x 7. ¢

Since for alln > 0, f, > 0, by Doob’s Martingale Convergence Theorem there is a function
f: X xP —[0,1] such that lim,_, f, = f on a set of probability 77 x 7 one. When the
sequence {f,} is uniformly integrable, the convergence is in L;(X x P, X x P, 7, x T) and
the following theorem holds: it states that 7 assigns probability one to a set of probability

measures absolutely continuous with respect to 7y.
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5.25 Theorem. Assume that {f,} is uniformly integrable. Then

THApeP:p(A) = /Af(x,p)ﬁ(dx), forallAe X}) =1. (5.26)

Proof. Fix k£ > 0 and D € V. Using Fubini, for all n > k£ and G € P,

/DXG ful@, p)71(dz) T (dp)
- /G( > /Bfn(xap)Tl(de))T(dp)

Be&, (D)

= [ »(D)T (@)

However, since { f,,} is uniformly integrable and lim, oo fr = fin Li(X X P, X X P, 71 xT),

lim [ fule,p)n(d)T(dp) = [ f(o,p)mi(de)T(dp):

n—oe Jp

Therefore, for all G € P,

[ p(D)T(dp) = |

DxG

fla,p)m(de)T(p) = [ ([ flap)m(de))T(dp).

From this it follows that

TH{peP:p(D)= /D f(z,p)ri(dz)}) =1 (5.27)

Now let G = Nee, v, 1p € P : p(B) = [p f(z,p)71(dz)}. Since each partition V,, has
a finite number of elements, equation (5.27) implies that 7(G) = 1. Let p € G; then, for all
Ae X,
p(4) = lim > p(B)

n—0o0
Beé&,(A)

= lim Y [ f@pn(d)
Begq(A)

= [ fa.p)mdr)

where the first and the last equality are a consequence of Lemma 5.3. Hence

TH{reP:pA) = /Af(x,p)ﬁ(dx), for all A € X}) = 1.

39



A sufficient condition for uniform integrability of the sequence {f,} (see, for instance,

Lemma I1.6.3 in Shiryayev (1984)) is the existence of a k¥ > 1 such that

sup [ f5(@,p)mi(da) T (dp) < 0

This condition implies the next useful Lemma and the following Corollary, a first version of
which appeared already in Kraft (1964); recall that, for a process 7T tailfree with respect to
a tree of partitions {V,}, there is a sequence {V}, g} of random variables defined on a space

(2,0, A) for which the conditions stated in Definition 5.5 are satisfied.

5.28 Lemma. If

0 Varx(Va,B)
u e
2 S (B W)

then the martingale { f,} is uniformly integrable.

< 00, (5.29)

Proof. We will verify that, when (5.29) is satisfied,

sup f2(z,p)71(dz)T (dp) < oo

n XxP

this implies uniform integrability of {f,}.
Fix n > 0, and note that

: [ f (P&
J o P pm ()T = [ (2T () (d).

However, for all z € X, it follows from Lemma 5.17 and (7%) that

n

1 (&n(z)) = H E\(Vi D8(Enyi)(x H E\(Vi 6;(:8))
i=1
Moreover,

/ P (énla =E, HV,,,S(&(M HEA (Vi @)

where the last equality follows from the independence property stated in (75). Therefore

/XX f2 (@, p)ri(dz)T (dp) = /Hrj(); 1(dzx). (5.30)

Let us indicate with

e VarA(Vn B)
M = SUP 55—+
nZZ:OBevn (B (Vip))
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which does not depend on n. Then

E\(VZ.

2,64

log(sup H W

zeX ;1

< ) sup[—z == — 1]
;mex EX(Vigi())

n Vary(V; ¢.(x
_ ZSUP EA( € ))

i—=1 T€X E)\(Vi,tfi(m))

=1

= Van (Viga)
< Yosup e
=1 zeX A ngi(z)

the second inequality follows from the fact that logz < z — 1, for all z > 0.

Hence

7 E)\(V-Qg.( ))
su ARSI < eM;
Iegzzl_[l Eg(‘/;,&(w))) B

this and (5.30) imply that

/ f2(x,p)71(dx)T (dp) < €.
XxP
Therefore,

sup | f2 (@, p)mi(dx) T (dp) < oo.

5.31 Corollary. If for alln >0 and B € V,,, Ex(V,,,5) > 0 and

i sup Vary(Va,B)
= Beva (E3(Va,B))

then there erists a measurable f: X x P — [0,00) such that

THApeP:p(A) = /Xf(:c,p)ﬁ(dx) for all A € X}).
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Proof. For alln > 0 and B € V,,, 71(B) > 0 since each random variable of the sequence
{Va,B} has strictly positive expected value. Then the result follows from the previous Lemma
and Theorem 5.25. o

Examples of tailfree processes which select continuous probability measures with proba-
bility one are deferred to the next section where we will consider a special class of tailfree

processes.

6 Polya trees

Polya trees are a special class of tailfree processes; they have been considered by Ferguson
(1974), Mauldin, Sudderth and Williams (1992) and by Lavine (1992, 1994). They generalize
the Dirichlet process with the advantage that they can be constructed to give probability

one to the set of continuous or absolutely continuous probability distributions on (X, X).

6.1 Definition.  Let {V,} be a tree of partitions of (X,X) such that, for a given
r > 0 and for all n > 0 and B € V, there are exactly r sets Ci,...,C, in V, 1 such
that ps(C;,n) = B for i = 1,...,r. Then, a probability distribution T on (P,P) which is
tailfree with respect to {V,} is said to be a Polya tree if the sequence of random variables
{Va,g : n > 0,B € V,.} appearing in Definition 5.5 is such that for alln >0 and B € V,,
the joint distribution of the random vector (Voi1,015 -, Vat1,c,) s Dirichlet and these vectors

are independent for different B € V,,.

In the rest of the section we consider a few examples of Polya trees with the aim to show
their greater tractability over more general tailfree processes. All of them will be binary
Polya trees, meaning that they will be defined by means of trees of binary partitions.

Let Vo = {X} and set V; = {By, B1} to be a measurable partition for X. Then let
(Boo, Bo1) be a measurable partition of By and (Bjg, B11) a measurable partition of B; and
set Vo = {Byo, Bo1, B1o, B11}. Continue in this fashion ad infinitum; the tree of partitions
so constructed is called a tree of binary partitions of X. For m > 1, let € = €;...¢,, with
e; € {0,1} for i = 1,...,m; then € defines in a unique way a set B, € V,,. We use the
notation Y, for the random variable V,,, p..

Set Y =1 and assume that (Yp,Y7) has Dirichlet distribution with parameters (ayg, o).
For all m > 1 and € = €;...€,, let (Yi, Ye) have Dirichlet distribution with parameters

(creo, Cte1) = hence with probability one Yo = 1 — Y,y and it is distributed according to a Beta
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with parameters (oo, ). Moreover, assume that the random variables of the collection
{Ye} are independent. With these assumptions conditions (77) — (73) and (75) are satisfied;
when condition (7}) is also satisfied, the tree of partitions {V,} and the sequence of random
variables {Y.} define a particular Polya tree distribution on (P, 7P) called binary Polya tree
with parameters ({V,}, {a.}).

6.2 Example. Let X = (0,1] endowed with its Borel sigma-field B(0, 1] and assume
that, for all n > 1,

1—1 1
Vo= {5 om
(o

Let {a,} be a sequence of nonnegative real numbers. Define Y to be a random variable

J:i=1,..,2"}.

with Beta distribution with parameters (aq, ;) and set Y1 = 1 — Y. For all n > 0 and
€ = €...6, with ¢; € {0,1}, let Yo be a random variable independent from Y, and from Yy
for all € = €].. ¢+ € {0,1}, different from e. Assume that the distribution of Y,y is Beta
with parameters (an+1, Qny1); set Yo =1 — Y.

The tree of partitions {V,} and the set of random variables Y’s define a binary Polya
tree; in fact it’s easy to check that conditions (77) — (75) of the previous section hold. In
order to verify that (7}) is satisfied notice that, if {B,} is a sequence of sets decreasing to

the empty set and such that, for each n > 0, B,, is union of sets in V,,, then

. . 1
Imo Y AN = Jm X o
€=€1...6n:Be€ER(Bn) =1 €=€1...6p:Be€ER (Bn)

= Jim 1(B) =0

where [ is used for the Lebesgue measure on (0,1], since , for all n > 0 and € = €;...€,,
We note that, for alln > 1 and 1 =1, ...,2",

1—1 1 1
(o ) = g

therefore 7y = [, the Lebesgue measure on (0, 1].

Moreover, since for all n > 0,

1
VarlYV| = ————
arl¥d = 6 1)
we have that
o Var o

Z sup Z

n=0 BeEVn E
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Setting, for instance, o, = an? with o > 0 for n = 1,2, ... yields a probability distribution
T on the set of probability measures defined on ((0, 1], B(0, 1]) which almost surely selects
probabilities absolutely continuous with respect to the Lebesgue measure, as follows from
Corollary 5.31.

Dubins and Freedman (1963) showed that setting a,, = o > 0 for all n > 1, yields instead
a binary Polya tree which almost surely selects continuous probabilities on ((0, 1], B(0, 1])
singular with respect to the Lebesgue measure.

Finally if o, = 2™ for n = 1, 2..., we obtain a Dirichlet process as follows from the next

theorem.

6.3 Theorem. Let T be a binary Polya tree with parameters ({V,}, {ae}). If, for all
n>1 and e = €...6y,¢; € {0,1},

Qe = Qg + Q1

then T is a Dirichlet process.

Proof. Let P be a random element of P with probability distribution 7. In order to
prove that 7 is a Dirichlet process we need to show that there is a finite measure « on (X, X)
such that, for any finite partition Dy, ..., Dy of X with D; € X,i =1, ..., k, the random vector
(P(Dy), ..., P(Dy)) has Dirichlet distribution with parameters (a(D), ..., a(Dy)).

By means of Charatheodory’s Theorem, it is not difficult to show that there is a unique

finite measure « on (X, X') such that, for all n > 1 and € = €;...€,,
a(Be) = a..
This is were we use the assumption that, for all n > 1 and € = €;...¢,,
Qe = Oep + Oy

Fix n > 1 and consider the partition V,, = {By. 00, Bo...01, ---» B1...10, B1..1}; by computing

its mixed moments, one may show that the random vector

(P(By..00), P(By...01), ---s P(Bi..10), P(Bi..1))

has Dirichlet distribution with parameters (O[(B()___()()), O,/(B()_“()l), . a/(Bl...IO)a O!(Bll)))
Now let Dy, ..., Dy be a measurable partition of X and consider the distribution of the
random vector (P(Dy),..., P(Dy)); because of (5.11) its distribution is the weak limit, as
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n — 0o, of a Dirichlet with parameters

BeEn(D1) BEEA(Dy)

Using Lemma 5.3 one proves that this is a Dirichlet with parameters (a(D,), ..., a(Dy)). ©

6.4 Remark. If 7 is a Dirichlet process with parameter o and {V,,} is a binary partition
of X, for all » > 1 and B, € V,, define o = a(B,). Then T is a binary Polya tree with

parameters ({V,}, {a.}). Moreover, since « is a measure,
Qe = Qe + Q1
for alle. ¢

We conclude the section with the determination of the posterior distribution of a binary
Polya tree; therefore let (X x P, X x P, 7) be a statistical model where the probability
7 is defined as in (2.1) with ¥ = T a binary Polya tree.

6.5 Theorem. Let T be a binary Polya tree with parameters ({V,},{ac}). Then, for
alln > 1 and (x4, ...,x,) € X",

T(|X1 =T, aXn = .'L'n)

is again a binary Polya tree with parameters ({V,},{a.}) where, for all m > 1 and € =
€1..-€m, € € {0,1},

C~E€ = O —+ ZIBE(.’L'Z)

i=1

Proof. We will consider only the case n = 1; the general case will then follow by induction
on n.

Let z € X. Define a family {Y,} of random variables such that, for all m > 1 and
€ = €...€, with ¢ € {0, 1}, the vector (}760, }761) has Dirichlet distribution with parameters

(Greo, Gie1). Moreover assume that the vectors (Y, Ye1) and (Yoo, Ye1) are independent for

different € and €. By using Lemma 5.19, one may show that, for all m > 1, if

V’m = {BO...OOa BO...Ola [RED) Bl...lOa Bl...ll}
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then

T((pBo...oov $Bo...015 +++» PBi1..109 931...11) € C‘Xl = 33)
- E[IC'[(% o %...00: }70 o %...01’ “rey }71 e f/l...l()a Y/l e ?'111)]]

for all C' € B[0,1]*". For illustration, we show this only for the case m = 2.
Fix C € B[0,1]*. Then, since T is a binary Polya tree with parameters ({V,}, {a.}), it

follows from Lemma 5.19 that

T((pBooa $Bo1 s PB1o> K»’Bn) € C|X1 = .73)
— E(IC[(K)K)Oa YE)K)I, }/1}/10’ }/lyll) € C]Kl(x)}/;l(x)eg(m))

E (Yvel (z) }/61 (z)e2 (m))

where B, ;) and B, (3)e,(z) are the sets in Vi and V, respectively to which the point z

(6.6)

belongs. Now, since Y, (;) and Y (z)ep(z) are independent and Beta distributed, one can
check that

ael(x) aq(m)@(m)
E Y; T Y; T)ez(x)) = -
( te) Ferlw)e )) Qg + oy ael(m)O + ael(z)l

Set K to be the quantity described by the previous equation. Analogously, using the fact that
the random vectors (Y, Y1), (Yoo, Yo1) and (Y39, Y11) are independent and Dirichlet distributed
with parameters (ag, 1), (oo, 1) and (aqg, a1) respectively, one shows that the numerator

of the right member of (6.6) is equal to

KE(IC((Y/E)%O, %%17 ?’1}710, }71}711))
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