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Summary. In this paper we introduce the subdistribution beta-Stacy process, a novel
Bayesian nonparametric process prior for subdistribution functions useful for the analysis
of competing risks data. In particular, we i) characterize this process from a predictive
perspective by means of an urn model with reinforcement, ii) show that it is conjugate with
respect to right-censored data, and iii) highlight its relations with other prior processes
for competing risks data. Additionally, we consider the subdistribution beta-Stacy process
prior in a nonparametric regression model for discrete-time competing risks data, with
application to the prognosis of HIV-infected men from the Amsterdam Cohort Studies.
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1. Introduction

In the setting of clinical prognostic research with a time-to-event outcome, often the
occurrence of one of several competing risks may preclude the occurrence of another
event of interest (Kalbfleisch and Prentice, 2002, Chapter 8). In such cases it is typi-
cally of interest to assess i) the probability that one of the considered competing risks
occurs within some time interval and ii) how this probability changes in association
with predictors of interest (Wolbers et al., 2009; Fine, 1999; Putter et al., 2007). For
example, using data from the Amsterdam Cohort Studies (Geskus et al., 2003), Putter
et al. (2007) assessed the prognosis of HIV-infected men as a function of whether they
presented or not a potentially protective deletion in the C–C chemokine receptor 5 gene
(CCR5). Specifically, they considered the problem of predicting the time elapsed from
seroconversion to the onset of two clinically relevant events: the emergence of the so-
called Syncytium Inducing (SI) phenotype or the development of AIDS with a non-SI
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phenotype (non-SI AIDS). Since the onset of either event is associated with a different
subsequent prognosis, the two events are considered as competing risks.

Competing risks data has received widespread attention in the frequentist literature.
It suffices to recall the comprehensive textbooks of Kalbfleisch and Prentice (2002),
Aalen et al. (2008), Andersen et al. (2012), Lawless (2011), Crowder (2012), and Pintilie
(2006). Putter et al. (2007), Wolbers et al. (2009), and Andersen et al. (2002) provide
an introductory overview of standard approaches for competing risks data. Classical
approaches to prediction in presence of competing risks focus on the subdistribution
function, also known as the cumulative incidence function, which represents the proba-
bility that a specific event occurs within a given time period. Kalbfleisch and Prentice
(2002, Chapter 8) describe a frequentist nonparametric estimator for the subdistribution
function, while Fine and Gray, in their pivotal 1999 paper, introduced a semiparametric
proportional hazards model for the subdistribution function. Fine (1999) and Scheike
et al. (2008) considered alternative semiparametric estimators, whilst Larson and Dinse
(1985), Jeong and Fine (2007), and Hinchliffe and Lambert (2013) considered parametric
regression models for the subdistribution function.

In contrast with the frequentist literature, the Bayesian literature on competing risks
is still sparse, although several relevant contributions can be identified. Ge and Chen
(2012) introduced a semiparametric model for competing risks by separately modelling
the subdistribution function of the primary event of interest and the conditional time-
to-event distributions of the other competing risks. They modelled the baseline sub-
distribution hazards and the cause-specific hazards by means of a gamma process prior
(see Nieto-Barajas and Walker, 2002 and Kalbfleisch and Prentice, 2002, Section 11.8).
De Blasi and Hjort (2007) suggested a semiparametric proportional hazards regression
model with logistic relative risk function for cause-specific hazards. For inference, they
assign the common baseline cumulative hazard a beta process prior (Hjort, 1990). With
the same approach, Hjort’s extension of the beta process for nonhomogeneous Markov
Chains (Hjort, 1990, Section 5) may be considered as a prior distribution on the set
of cause-specific baseline hazards in a more general multiplicative hazards model (see
Andersen et al., 2012, Chapter III and Lawless, 2011, Chapter 9). In the beta process
for nonhomogeneous Markov Chains the individual transition hazards are necessarily
independent (Hjort, 1990, Section 5). The beta-Dirichlet process, a generalization of the
beta process introduced by Kim et al. (2012), relaxes this assumption by allowing for
correlated hazards. Kim et al. (2012) use the beta-Dirichlet process to define a semi-
parametric semi-proportional transition hazards regression model for nonhomogeneous
Markov Chains which, in the competing risks setting, could be used to model the cause-
specific hazards. With the same purpose, Chae et al. (2013) proposed a nonparametric
regression model based on a mixture of beta-Dirichlet process priors.

In this paper we introduce a novel stochastic process, a generalization of Walker
and Muliere’s beta-Stacy process (Walker and Muliere, 1997), which represents a prior
distribution for the Bayesian nonparametric analysis of discrete-time competing risks
data. This new process, which we call the subdistribution beta-Stacy process, is conjugate
with respect to right censored observations, greatly simplifying the task of performing
probabilistic predictions. We will also use the subdistribution beta-Stacy process to
specify a Bayesian nonparametric competing risks regression model, thus generalizing the
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survival regression approach of Rigat and Muliere (2012). Our perspective is Bayesian
because the related interpretation of probability is intimately linked with the task of
making predictions in presence of uncertainty (De Finetti, 1964; Singpurwalla, 1988)
and nonparametric because we aim to avoid potentially restrictive and/or arbitrary
parametric model components (Müller and Mitra, 2013; Hjort et al., 2010).

To characterize the subdistribution beta-Stacy process we adhere to the predictive
approach for the construction of nonparametric process priors, i.e. of prior probability
distributions on infinite-dimensional spaces of distribution functions (Ferguson, 1973;
Hjort et al., 2010; Müller and Mitra, 2013). In this framework, a nonparametric prior
distribution is implicitly characterized by specifying the predictive distribution of the
observable quantities and then by appealing to results related to the celebrated de Finetti
Representation Theorem (Walker and Muliere, 1999; Muliere et al., 2000; Epifani et al.,
2002; Muliere et al., 2003; Bulla and Muliere, 2007; Fortini and Petrone, 2012). In
the context of this paper, the predictive distribution represents a specific rule which
prescribes how probabilistic predictions for a new patient should be performed after
observing the experience of other similar (exchangeable) patients. Not only this approach
is tailored to our predictive purposes, but it also avoids some conceptual difficulties
that arise when specifying prior distributions for unobservable quantities, such as cause-
specific hazards (De Finetti, 1964; Singpurwalla, 1988; Wechsler, 1993; Cifarelli and
Regazzini, 1996; Bernardo and Smith, 2000, Chapter 4).

The predictive rule underlying the subdistribution beta-Stacy process will be de-
scribed in terms of the laws determining the evolution of a reinforced urn process (Muliere
et al., 2000). Other well-known prior processes were predictively characterized by Muliere
et al. (2000) using reinforced urn processes, including Pólya trees (Mauldin et al., 1992),
the beta-Stacy process (Walker and Muliere, 1997), and, more generally, neutral-to-the-
right processes (Doksum, 1974). In detail, a reinforced urn process is a stochastic process
with countable state-space S. Each point x ∈ S is associated with an urn containing
coloured balls. The possible colors of the ball are represented by the elements of the
finite set E. Each urn x ∈ S initially contains nx(c) ≥ 0 balls of color c ∈ E. The
quantities nx(c) need not be integers, although thinking them as such simplifies the de-
scription of the process. For a fixed initial state x0, recursively define the process as
follows: i) if the current state is x ∈ S, then a ball is sampled from the corresponding
urn and replaced together with a fixed amount m > 0 of additional balls of the same
color; hence, the extracted color is “reinforced”, i.e. made more likely to be extracted
in future draws from the same urn (Coppersmith and Diaconis, 1987; Pemantle, 1988,
2007); ii) if c ∈ E is the color of the sampled ball, then the next state of the process is
q(x, c), where q : S×E → S is a known function, called the law of motion of the process,
such that for every x, y ∈ S there exists a unique c(x, y) ∈ E satisfying q(x, c(x, y)) = y.
For our purposes, the sequence of colors extracted from the urns will represent the his-
tory of a series of sequentially observed patients. The “reinforcement” of colors will
then correspond to the notion of “learning from the past” that allows predictions to be
performed and which is central in the Bayesian paradigm (Muliere et al., 2000, 2003;
Bulla and Muliere, 2007; Peluso et al., 2015).
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2. The subdistribution beta-Stacy process

Suppose that the random variable T ∈ {0, 1, 2, . . .} represents the time until an at-risk
individual experiences some event of interest (e.g. time from seroconversion to AIDS on-
set for a HIV-infected man). If the distribution of T is unknown, then, in the Bayesian
framework, it may be assigned a nonparametric prior to perform inference. In other
words, it may be assumed that, conditionally on some random distribution function G
defined on {0, 1, 2, . . .}, T is distributed according to G itself: P (T ≤ t|G) = G(t) for all
t ≥ 0. Thus the random distribution functionG assumes the role of a infinite-dimensional
parameter, while its distribution corresponds to the nonparametric prior distribution.
The beta-Stacy process of Walker and Muliere (1997) is one of such nonparametric pri-
ors which has received frequent use. Specifically, a random distribution function G on
{0, 1, 2, . . .} is a discrete-time beta-Stacy process with parameters {(βt, γt) : t ≥ 1},
where

lim
t→+∞

t∏
u=1

γk
βk + γk

= 0, (1)

if: i) G(0) = 0 with probability 1 and ii) ∆G(t) = Ut
∏t−1
u=1(1 − Uu) for all t ≥ 2,

where {Ut : t ≥ 1} is a sequence of independent random variables such that Ut ∼
Beta(βk, γk) (Walker and Muliere, 1997). It can be shown that condition (1) is both
necessary and sufficient for a random function G(t) satisfying points i) and ii) to be
a cumulative distribution function with probability one. The beta-Stacy process prior
is conjugate with respect to right-censored data, a property that makes it especially
suitable in survival analysis applications (Walker and Muliere, 1997).

To generalize this approach to competing risks, we introduce the following definitions:

Definition 2.1. A function F : {0, 1, 2, . . .} × {1, . . . , k} → [0, 1], k ≥ 1, is called
a (discrete-time) subdistribution function if it is the joint distribution function of some
random vector (T, δ) ∈ {0, 1, 2, . . .} × {1, . . . , k}: F (t, c) = P (T ≤ t, δ = c) for all t ≥ 0
and c ∈ {1, . . . , k}. A random subdistribution function is defined as a stochastic process
indexed by {0, 1, 2, . . .} × {1, . . . , k} whose sample paths form a subdistribution function
almost surely.

Suppose now that T represents the time until one of k specific competing events
occurs and that δ = 1, . . . , k indicates the type of the occurring event. For instance, for
k = 2, T may represent time from seroconversion to onset of either the SI phenotype
or of non-SI AIDS, while δ may represent the specific event that occurred: δ = 1 if
the event is onset of the SI phenotype, δ = 2 if the event is onset of non-SI AIDS.
As before, if the distribution of (T, δ) is unknown, then in the Bayesian nonparametric
framework it is assumed that, conditionally on some random subdistribution function
F , (T, δ) is distributed according to F itself: P (T ≤ t, δ = c|F ) = F (t, c) for all t ≥ 0
and c = 1, . . . , k.

Remark 2.1. Conditionally on F , ∆F (t, c) = F (t, c)−F (t−1, c) is the probability of
experiencing an event of type c at time t: ∆F (t, c) = P (T = t, δ = c|F ). Additionally, if

G(t) =
∑k

d=1 F (t, k), ∆G(t) = G(t)−G(t−1), and Vt,k = ∆F (t, c)/∆G(t), then: G(t) =
P (T ≤ t|F ) is the cumulative probability of experiencing an event by time t, ∆G(t) =
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P (T = t|F ) is the probability of experiencing an event at time t, and Vt,c = P (δ = c|T =
t, F ) is the probability of experiencing an event of type c at time t given that some event
occurs at time t. Moreover, it can be shown that F (t, c) =

∑t
u=1 S(t− 1)∆Ac(t), where

S(t) = 1−G(t) and Ac(t) = ∆F (t, c)/(1−
∑k

d=1 F (t−1, d)) is the cumulative hazard of
experiencing an event of type c by time t (Kalbfleisch and Prentice, 2002, Chapter 8).

To specify a suitable prior on the random subdistribution function F , we now intro-
duce the subdistribution beta-Stacy process:

Definition 2.2. Let {(αt,0, . . . , αt,k) : t ≥ 1} be a collection of (k + 1)-dimensional
vectors of positive real numbers satisfying the following condition:

lim
τ→+∞

τ∏
t=1

αt,0∑k
d=0 αt,d

= 0. (2)

A random subdistribution function F is said to be a discrete-time subdistribution beta-
Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1} if:

(a) F (0, c) = 0 with probability 1 for all c = 1, . . . , k;
(b) for all c = 1, . . . , k and all t ≥ 1,

∆F (t, c) = Wt,c

t−1∏
u=1

(
1−

k∑
d=1

Wu,d

)
,

with the usual convention that empty products are equal to 1, and where {Wt =
(Wt,0, . . . ,Wt,k) : t ≥ 1} is a sequence of independent random vectors such that for
all t ≥ 1, Wt ∼ Dirichletk+1(αt,0, . . . , αt,k).

Remark 2.2. In Section 3, Remark 3.1, it will be shown that condition (2) is both
necessary and sufficient for a random function F (t, c) satisfying points 1 and 2 of Def-
inition 2.2 to be a subdistribution function with probability 1. This justifies regarding
the subdistribution beta-Stacy process as a potential prior distribution on the space of all
subdistribution functions.

Lemma 2.1. Let F be a subdistribution beta-Stacy process with parameters
{(αt,0, . . . , αt,k) : t ≥ 1}. Then

E[∆F (t, c)] = Kt,c

c−1∏
d=0

(1−Kt,d) =
αt,c∑k
d=0 αt,d

t−1∏
u=1

αu,0∑k
d=0 αu,d

, (3)

Var (∆F (t, c)) = Rt,c

c−1∏
d=0

(1− 2Kt,d +Rt,d)− E[∆F (t, c)]2 (4)
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for all t ≥ 1 and c = 1, . . . , k, where

Kt,0 = 1−

(
1− αt,0∑k

d=0 αt,d

)
t−1∏
u=1

αu,0∑k
d=0 αu,d

,

Kt,c =
αt,c∑k
d=c αt,d

,

Rt,0 = (1−Kt,0)

(
1 +

∑k
d=1 αt,d

1 +
∑k

d=0 αt,d

t−1∏
u=1

1 + αu,0

1 +
∑k

d=0 αu,d
− 2

)
+ 1,

Rt,c = Kt,c
1 + αt,c

1 +
∑k

d=c αt,d
.

Proof. Using Theorem 2.5 of Ng et al. (2011) it is possible to show that the vector

of random probabilities (1−
∑k

d=1 ∆F (t, d),∆F (t, 1), . . . ,∆F (t, k)) is completely neutral
in the sense of Connor and Mosimann (1969). Equations (3) and (4) can therefore
be directly computed from Definition 2.2 using formulas (4) and (9) of Connor and
Mosimann (1969).

Definition 2.3. Let F0 be a fixed subdistribution function and let ωt > 0 for all
t ≥ 1. Then a random subdistribution function F has a sBS(ω, F0) distribution if it is
a subdistribution beta-Stacy process with parameters

αt,c = ωt∆F0(t, c), αt,0 = ωt

(
1−

k∑
d=1

F0(t, d)

)
,

where t ≥ 1 and c = 1, . . . , k.

Remark 2.3. If F ∼ sBS(ω, F0), then condition (2) is automatically satisfied since∑k
d=0 αt,d = ωt(1 −

∑k
d=1 F0(t − 1, d)) and so

∏+∞
t=1 [αt,0/

∑k
d=0 αt,d] = limτ→+∞(1 −∑k

d=1 F0(τ, d)) = 0, as limτ→+∞
∑k

d=1 F0(τ, d) = 1 (provided occurrence of at least one
of the k events is inevitable). Moreover, it can be shown from Equation (3) in Lemma 2.1
that E[∆F (t, c)] = ∆F0(t, c) for all t ≥ 1 and c = 1, . . . , k, implying that F is centered
on F0. From Equation (4) it can be further shown that Var (∆F (t, c)) is a decreasing
function of ωt and Var (∆F (t, c))→ 0 as ωt → +∞. The parameters ωt can thus be used
to control the prior precision of the sBS(ω, F0) process.

3. Predictive characterisation of the subdistribution beta-Stacy process

Muliere et al. (2000) described a predictive construction of the discrete-time beta-Stacy
process by means of a reinforced urn process {Yn : n ≥ 0} with state space {0, 1, 2, . . .}.
The urns of this process contain balls of only two colors, black and white (say), and
reinforcement is performed by the addition of a single ball (m = 1). To intuitively
describe this process, suppose that each patient in a series is observed from an initial
time point until the onset of an event of interest. The process {Yn : n ≥ 0} starts
from Y0 = 0, signifying the start of the observation for the first patient, and then
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evolves as follows: if Yn = t and a black ball is extracted, then the current patient
does not experience the event at time t and Yn+1 = t + 1; if instead a white ball is
extracted, then the current patient experiences the event at time t and Yn+1 = 0, so the
process is restarted to signify the start of the observation of a new patient. With this
interpretation, the number Tn of states visited by {Yn : n ≥ 0} between the (n − 1)-th
and n-th visits to the initial state 0 correspond to the time of event onset for the n-th
patient. If the process {Yn : n ≥ 0} is recurrent (so the times Tn are almost surely
finite), a representation theorem for reinforced urn processes implies that the process
{Yn : n ≥ 0} is a mixture of Markov Chains. The corresponding mixing measure is
such that the rows of the transition matrix are independent Dirichlet processes (Muliere
et al., 2000, Theorem 2.16; see Ferguson, 1973 for the definition of a Dirichlet process).
Using this representation, Muliere et al. (2000) showed that the sequence {Tn : n ≥ 1}
is exchangeable and that there exists a random distribution function G such that i)
conditionally on G, the times T1, T2, . . . are i.i.d. with common distribution function G,
and ii) G is a beta-Stacy process (Muliere et al., 2000, Section 3).

In this section, we will generalize the predictive construction of Muliere et al. (2000)
to yield a similar characterization of the subdistribution beta-Stacy process. To do so,
consider a reinforced urn process {Xn : n ≥ 0} with state space S = {0, 1, 2, . . .} × E,
set of colors E = {0, 1, . . . , k} (k ≥ 1), starting point X0 = (0, 0), and law of motion
defined by q((t, 0), c) = (t+ 1, c) and q((t, d), c) = (0, 0) for all for all integers t ≥ 0 and
c, d = 0, 1, . . . , k, d 6= 0. Further suppose that reinforcement is performed by the addition
of a single ball (m = 1), as before, and that the initial composition of the urns is given
as follows: i) n(t,0)(c) = αt+1,c for all integers t ≥ 0 and c = 0, 1, . . . , k; ii) n(t,d)(0) = 1,
n(t,d)(c) = 0 for all integers t ≥ 0 and c, d = 1, . . . , k, d 6= 0. Now, define τ0 = 0 and
τn+1 = inf{t > τn : Xt = (0, 0)} for all integers n ≥ 0. The process {Xn : n ≥ 0}
is said to be recurrent if P (∩+∞n=1{τn < +∞}) = 1. Additionally, let T ((t, c)) = t and
D((t, c)) = c for all (t, c) ∈ S. For all n ≥ 1, set Tn = T (Xτn−1), the length of the
sequence of states between the (n − 1)-th and the n-th visits to the initial state (0, 0),
and Dn = D(Xτn−1), the color of the last ball extracted before the n-th visit to (0, 0).

The process {Xn : n ≥ 0} can be interpreted as follows: a patient initially at risk
of experiencing any of k possible outcomes is followed in time starting from time t = 0;
at each time point t, the color of the extracted ball represents the status of the patient
at the next time point t + 1; if a ball of color 0 is extracted, the patient remains at
risk at the next time point; if instead a ball of color c ∈ {1, . . . , k} is extracted, then
the patient will experience an outcome of type c at the next time point. The process
returns to the initial state after such an occurrence to signify the arrival of a new patient.
With this interpretation, the variable Tn represents the time at which the n-th patient
experiences one of the k events under study, while Dn encodes the type of the realized
outcome. These concepts are illustrated in Figure 3. Moreover, note that, although
slightly different, the reinforced urn process used to construct the beta-Stacy process
by Muliere et al. (2000) is essentially equivalent to the process {Xn : n ≥ 0} in the
particular case where k = 1, with color 0 being black and color 1 being white in the
above description.

Continuing, in accordance with Diaconis and Freedman (1980) we say that the pro-
cess {Xn : n ≥ 0} is Markov exchangeable if P (X0 = x0, . . . , Xn = xn) = P (X0 =
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1
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1
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0
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1
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(3,1)

0
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b) Patient 2

0 1

0 0 2

0

0

Fig. 1. Illustration of the reinforced urn process characterizing the subdistribution beta-Stacy
process assuming k = 2. In both panels, the horizontal axis measures the time since the last
visit to the urn representing the state (0, 0). The process starts from the (0, 0) urn in Panel a,
in which all urns are represented at their initial composition. In this example, balls of colors 0,
0, and 2 are successively extracted from the urns visited by the process, respectively at times
0, 1, and 2. At time 3 the process visits the (3, 2) urn, from which only balls of color 0 can be
extracted. The process then returns to the (0, 0) urn and continues as shown in Panel b, where
the composition of the urns has been updated by reinforcement. Suppose now that each visit to
(0, 0) represents the arrival of a new HIV-infected man at the moment of seroconversion. If color
1 represents onset of the SI phenotype and color 2 represents onset of non-SI AIDS, then the
sequence of urns visited in Panel a corresponds to the history of a man (Patient 1) who develops
non-SI AIDS after 3 time instants (T1 = 3, D1 = 2), while Panel b represents the history of a
subsequently observed man (Patient 2) who experiences onset of the SI phenotype after 2 time
instants (T2 = 2, D2 = 1).

y0, . . . , Xn = yn) for all finite sequences (x0, . . . , xn) and (y0, . . . , yn) of elements of S
such that i) x0 = y0 and ii) for any s1, s2 ∈ S, the number of transitions from s1 to s2
is the same in both sequences.

Lemma 3.1. The process {Xn : n ≥ 0} is Markov exchangeable. Consequently, if
{Xn : n ≥ 0} is recurrent, then it is also a mixture of Markov Chains with state space
S. In other words, there exists a probability measure µ on the space M of all transition
matrices on S × S and a M-valued random element Π ∼ µ such that for all n ≥ 1 and
all sequences x0, . . . , xn ∈ S with x0 = (0, 0),

P (X0 = x0, . . . , Xn = xn|Π) =

n−1∏
i=0

Π(xi, xi+1),

where Π(x, y) is the element on the x-row and y-th column of Π. Additionally, for each
x = (t, c) ∈ S, let Nx(·) be the measure on S (together with the Borel σ-algebra generated
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by the discrete topology) which gives mass n(t,c)(d) to q((t, c), d) for all d = 0, 1, . . . , k,
and null mass to all other points in S. Then, the random probability measure Π(x, ·) on
S is a Dirichlet process with parameter measure Nx(·).

Proof. The thesis follows immediately from Theorem 2.3 and 2.16 of Muliere et al.
(2000) and Theorem 7 of Diaconis and Freedman (1980).

Lemma 3.2. The process {Xn : n ≥ 0} is recurrent if and only if {(αt,0, . . . , αt,k) :
t ≥ 1} satisfies condition (2).

Proof. First observe that

P (τ1 = +∞) = lim
n→+∞

P (τ1 > n)

= lim
n→+∞

P (X0 = (0, 0), X1 = (1, 0), . . . , Xn−1 = (n− 1, 0))

= lim
n→+∞

n−1∏
t=0

n(t,0)(0)∑k
d=1 n(t,0)(d)

= lim
n→+∞

n∏
t=1

αt,0∑k
d=0 αt,d

.

Consequently, if {Xn : n ≥ 0} is recurrent, then P (τ1 =∞) = 0 and so condition (2)
must hold. Conversely, suppose that condition (2) is satisfied. Then P (τ1 < +∞) = 1.
By induction on n ≥ 1, suppose that P (∩ni=1{τi < +∞}) = 1. Then

P (τn+1 = +∞) =

∫
∩n

i=1{τi<+∞}
P (τn+1 = +∞|T1, . . . , Tn)dP.

Given T1, . . . , Tn, if τn+1 = +∞ then the process must visit all states (t, 0) with t ≥ 0
starting from time τn. Since the states (t, 0) for t > L := max(T1, . . . , Tn)+1 correspond
to previously unvisited urns, the probability of this event is bounded above by

lim
n→+∞

n∏
i=L

n(i,0)(0)∑k
d=1 n(i,0)(d)

= lim
n→+∞

n∏
i=L+1

αi,0∑k
d=1 αi,d

.

Hence

P (τn+1 = +∞) ≤
∫
∩n

i=1{τi<+∞}
lim

n→+∞

n∏
i=L+1

αi,0∑k
d=1 αi,d

dP = 0,

where the last equality follows from condition (2). Consequently, P (∩n+1
i=1 {τi < +∞}) =

1. This argument shows that P (∩+∞i=1 {τi < +∞}) = 1 and so the process must be
recurrent, as needed.

Theorem 3.1. Suppose that the process {Xn : n ≥ 0} is recurrent. Then there exists
a random subdistribution function F , such that, given F , then the (Tn, Dn) are i.i.d.
distributed according to F . Moreover, i) F is determined as a function of the random
transition matrix Π from Lemma 3.1, and ii) F is a subdistribution beta-Stacy process
with parameters {(αt,0, . . . , αt,k) : t ≥ 1}.
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Proof. Let Π be the random transition matrix on S × S provided by Lemma 3.1
and define F (t, c) = P (T1 ≤ t,D1 = c|Π), which is clearly a random subdistribution
function. Moreover, for all c = 1, . . . , k,

F (0, c) = P (T1 = 0, D1 = c|Π) ≤ P (T (Xτ1−1) = 1|Π) = P (τ1 = 1|Π) = 0.

Instead, for all c = 1, . . . , k and all t ≥ 1,

∆F (t, c) = P (T1 = t,D1 = c|Π)

= P (X0 = (0, 0), . . . , Xt−1 = (t− 1, 0), Xt = (t, c)|Π)

= Π((t− 1, 0), (t, c))
t−2∏
u=0

Π((u, 0), (u+ 1, 0)).

Now, for all t ≥ 1 and d = 0, 1, . . . , k, N(t−1,0)({(t, d)}) = N(t−1,0)({q((t − 1, 0), d)}) =
n(t−1,0)(d) = αt,d. Then, from Lemma 3.1 again and from the properties of the Dirichlet

process (Ferguson, 1973), it follows that, for all t ≥ 1,
(
Π((t − 1, 0), (t, 0)), . . . ,Π((t −

1, 0), (t, k))
)
∼ Dirichletk+1 (αt,0, . . . , αt,k). Hence, Lemma 3.2 implies that F is a sub-

distribution beta-Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1}.
To show that, given F , the (Tn, Dn) are i.i.d. distributed according to F , it suffices

to note that for all (t1, d1), . . . , (tn, dn) ∈ S such that ti ≥ 1 for all i = 1, . . . , n, it holds
that

P ((T1, D1) = (t1, d1), . . . , (Tn, Dn) = (tn, dn)|Π)

=

n∏
i=1

{
Π((ti − 1, 0), (ti, di))

ti−1∏
t=0

Π((t, 0), (t+ 1, 0))

}

=

n∏
i=1

∆F (ti, di).

Since F is a function of Π, this concludes the proof.

Remark 3.1. Suppose that F is a random function satisfying points 1 and 2 of Def-
inition 2.2. The proof of Theorem 3.1 also shows that, if condition (2) is satisfied, then
F is a random subdistribution function. This is because condition (2) coincides with the
recurrency condition in Lemma 3.2. Suppose instead that F is a subdistribution function
with probability 1. Then F̃ (t, c) = E[F (t, c)] is an subdistribution function and

P (T1 ≤ t,D1 = c) = F̃ (t, c) =
αt,d∑k
c=0 αt,c

t−1∏
u=1

αu,0∑k
c=0 αu,c

for all t ≥ 0 and c = 1, . . . , k. Hence it must be

0 = P (T1 = +∞) = lim
t→+∞

P (X0 = (0, 0), . . . , Xt = (t, 0)) = lim
t→+∞

t∏
u=1

αu,0∑k
c=0 αu,c

.

Thus condition (2) must hold. Therefore, condition (2) is both necessary and sufficient
for F to be a random subdistribution function, justifiying the claim anticipated in Remark
2.2 of Section 2.
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Another immediate consequence of Theorem 3.1 is the following corollary:

Corollary 3.1. The sequence of random variables {(Tn, Dn) : n ≥ 1} induced by
the reinforced urn process {Xn : n ≥ 0} is exchangeable.

This fact could also have been proved directly through an argument similar to that at
the end of Section 2 of Muliere et al. (2000). To elaborate, suppose that {Yn : n ≥ 0} is
a recurrent stochastic process with countable state space S and such that X0 = x0 ∈ S
with probability one. Then a x0-block is defined as any finite sequence of states visited by
process which begins from x0 and ends at the state immediately preceding the successive
visit to x0. Diaconis and Freedman (1980) showed that if {Yn : n ≥ 0} is also Markov
exchangeable, then the sequence {Bn : n ≥ 1} of its x0-blocks is exchangeable. Now,
consider the reinforced urn process {Yn : n ≥ 0} used by Muliere et al. (2000) for
constructing the beta-Stacy process and described at the beginning of this section. This
process is Markov exchangeable and so, under a recurrency condition, its sequence of
0-blocks {Bn : n ≥ 1} is exchangeable. Consequently, so must be the corresponding
sequence of total survival times {Tn = f(Bn) : n ≥ 1}, where f(B) is the length of
the 0-block B after excluding its initial element. Each 0-block Bn must have the form
(0, 1, . . . , t) for some t ≥ 1 and f((0, 1, . . . , t)) = t for all t ≥ 1.

In our setting, it can easily be seen that the (0, 0)-blocks of the reinforced urn pro-
cess {Xn : n ≥ 0} introduced in this section are finite sequences of states of the form
((0, 0), (1, 0), . . . , (t− 1, 0), (t, c)) for some t ≥ 1 and c = 1, . . . , k. Any such (0, 0)-block
represents the entire observed history of an individual at risk of developing any one of
the k considered competing risks. For example, the history of Patient 1 in Figure 3(a) is
represented by the (0, 0)-block B1 = ((0, 0), (1, 0), (2, 0), (3, 2)), while that of Patient 2 in
Figure 3(b) is represented by the (0, 0)-block B2 = ((0, 0), (1, 0), (2, 1)). If {Xn : n ≥ 0}
is recurrent, by Lemma 3.1 its sequence of (0, 0)-blocks {Bn : n ≥ 1} is exchangeable.
Hence, so must be the sequence {(Tn, Dn) = f(Bn) : n ≥ 1}, as claimed, where f(B) is
the last state in the (0, 0)-blockB. For the example in Figure 3, f(B1) = (T1, D1) = (3, 2)
and f(B2) = (T2, D2) = (2, 1).

4. Posterior distributions and censoring

Suppose that (Ti, Di) is distributed according to some subdistribution function F and
Ti > 0 with probability 1 for all i = 1, . . . , n. If the value (Ti, Di) can be potentially
right-censored at the known time ci ∈ {0, 1, 2, . . .} ∪ {+∞}, then instead of observing
the actual value (Ti, Di) one is only able to observed (T ∗i , D

∗
i ), where (T ∗i , D

∗
i ) = (Ti, Di)

if Ti ≤ ci and (T ∗i , D
∗
i ) = (ci, 0) if Ti > ci (if ci = +∞, then (Ti, Di) is not affected by

censoring). The following theorem shows that the subdistribution beta-Stacy process
has a useful conjugacy property even in presence of such right-censoring mechanism.

Theorem 4.1. Suppose that (T1, D1), . . ., (Tn, Dn) is an i.i.d. sample from a sub-
distribution function F distributed as a subdistribution beta-Stacy process with param-
eters {(αt,0, . . . , αt,k) : t ≥ 1}. If (T1, D1), . . . , (Tn, Dn) are potentially right-censored
at the known times c1, . . . , cn, respectively, then the posterior distribution of F given
(T ∗1 , D

∗
1),. . ., (T ∗n , D

∗
n) is a subdistribution beta-Stacy with parameters {(α∗t,0, . . . , α∗t,k) :
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t ≥ 1}, where α∗t,0 = αt,0 + lt + mt,0, α∗t,d = αt,d + mt,d for all integers t ≥ 1 and for

d = 1, . . . , k, where lt =
∑n

i=1 I {T ∗i > t} and mt,d =
∑n

i=1 I {T ∗i = t,Di = d} for all
t ≥ 1 and d = 0, 1, . . . , k.

Proof. To prove the thesis, it suffices it is true for n = 1, as the general case
will then follow from an immediate induction argument. To do so, first note that,
with reference to the renforced urn process {Xn : n ≥ 0} of Section 3, condition (2)
implies that F can be seen as a function of some random transition matrix Π as in
the proof of Theorem 3.1. Assume now that (T ∗1 , D

∗
1) = (t, d) for some t ≥ 1 and d =

0, 1, . . . , k. Since observing (T ∗1 , D
∗
1) is equivalent to observing X0 = (0, 0), . . . , Xt−1 =

(t− 1, 0), Xt = (t, d), Corollary 2.21 of Muliere et al. (2000) implies that the rows of Π
are independent and, for all x ∈ S, the parameter measure of the x-th row of Π assigns
mass n(0,0)(0)+1, . . . , n(t−2,0)(0)+1, n(t−1,0)(d)+1 to the states (1, 0), . . . , (t−1, 0), (t, d),
respectively, and mass n(t′,d′)(c) to all other states q((t′, d′), c) 6= (1, 0),. . ., (t−1, 0), (t, d)
in S. Since αt,d = n(t−1,0)(d) for all t ≥ 1 and d = 0, 1, . . . , k, it can now be seen
that, conditionally on (T ∗1 , D

∗
1), F must be subdistribution beta-Stacy with parameters

{(α∗t,0, . . . , α∗t,k) : t ≥ 1} defined by α∗t,0 = αt,0 + I {T ∗1 > t}+ I {T ∗1 = t,D∗1 = 0}, α∗t,d =

αt,d+I {T ∗1 = t,D∗1 = d} for all integers t ≥ 1 for d = 1, . . . , k. This concludes the proof.

The following corollary is now a direct consequence of Equation (3) in Lemma 2.1.

Corollary 4.1. The predictive distribution of a new (non-censored) observation
(Tn+1, Dn+1) from F having previously observed (T ∗1 , D

∗
1), . . . , (T ∗n , D

∗
n) is

P ((Tn+1, Dn+1) = (t, d)|(T ∗1 , D∗1), . . . , (T ∗n , D
∗
n)) =

= E [∆F (t, d)|(T ∗1 , D∗1), . . . , (T ∗n , D
∗
n)]

=
α∗t,d∑k
c=0 α

∗
t,c

t−1∏
u=1

α∗u,0∑k
c=0 α

∗
u,c

.

for all t ≥ 1 and d = 1, . . . , k.

The following result instead follows from Corollary 4.1 and Remark 2.3.

Corollary 4.2. Assume that F ∼ sBS(ω, F0) a priori. Then, the posterior distri-
bution of F given the observed values of (T ∗1 , D

∗
1), . . . , (T ∗n , D

∗
n) is sBS(ω∗, F ∗), where

F ∗(t, c) =

t∑
u=1

S∗(u− 1)∆A∗c(u),

A∗c(t) =

t∑
u=1

ωu∆F0(u, c) +mu,c

ωu(1−
∑k

d=1 F0(u− 1, d)) + lu +
∑k

d=0mu,d

,

S∗(t) =
t∏

u=1

(
1−

ωu
∑k

d=1 ∆F0(u, d) +
∑k

d=1mu,d

ωu(1−
∑k

d=1 F0(u− 1, d)) + lu +
∑k

d=0mu,d

)
,

and

ω∗t =
ωt

[
1−

∑k
d=1 F0(t, d)

]
+ lt +mt,0

1−
∑k

d=1 F
∗(t, d)

.
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Remark 4.1. As maxu=1,...,t(ωu)→ 0, S∗(t) converges to the discrete-time Kaplan-

Meier estimate Ŝ(t) =
∏t
u=1(1 − [

∑k
d=1mu,d]/[lu +

∑k
d=0mu,d]), while A∗c(t) converges

to the Nelson-Aalen estimate Âc(t) =
∑t

u=1mu,c/(lu +
∑k

d=0mu,d). All in all, F ∗(t, c),
which coincides with the optimal Bayesian estimate of F under a squared-error loss,
converges to F̂ (t, c) =

∑t
u=1 Ŝ(u − 1)∆Âc(u), the classical non-parametric estimate of

F (t, c) of Kalbfleisch and Prentice (2002, Chapter 8). Conversely, if minu=1,...,t(ωu) →
+∞, then S∗(t) converges to 1 −

∑k
d=1 F0(t, d), Ac(t) converges to the corresponding

cumulative hazard of F0, and therefore F ∗(t, c) converges to the prior mean F0(t, c).

Remark 4.2. (Censored data likelihood) Given a sample (t∗1, d
∗
1),. . ., (t∗n, d

∗
n) of cen-

sored observations from a subdistribution function F (t, c), define zi = I {d∗i 6= 0} for all
i = 1, . . . , n. It can then be shown that the likelihood function for F is

L(F ) = P ((T ∗1 , D
∗
1) = (t∗1, d

∗
1), . . . , (T

∗
n , D

∗
n) = (t∗n, d

∗
n)|F )

=
n∏
i=1

∆F (t∗i , d
∗
i )
zi

[
1−

k∑
d=1

F (t∗i , d)

]1−zi
.

(5)

So far the censoring times c1, . . . , cn have been considered fixed and known. Theorem
4.1 however continues to hold also in the following more general setting in which censoring
times are random: let the censored data be defined as T ∗i = min(Ti, Ci) and D∗i =
I {Ti ≤ Ci} for all i = 1, . . . , n, where i) C1, . . . , Cn are independent random variable with
common distribution function H(t), ii) conditional on F and H, (T1, D1), . . . , (Tn, Dn)
and C1, . . . , Cn are independent, and iii) F and H are apriori independent. Adapting
the terminology of Heitjan and Rubin (1991; 1993), in this case the random censoring
mechanism is said to be ignorable.

Theorem 4.2. If censoring is random and ignorable and F is a priori a subdis-
tribution beta-Stacy process, then the marginal likelihood for F is proportional to the
likelihood L(F ) defined in Equation (5). Consequently, the posterior distribution of F
given (T ∗1 , D

∗
1), . . ., (T ∗n , D

∗
n) is the same as that described in Theorem 4.1.

Proof. The likelihood function for F and H given a sample (t∗1, d
∗
1),. . ., (t∗n, d

∗
n) of

observations affected from ignorable random censoring is

L∗(F,H) = P ((T ∗1 , D
∗
1) = (t∗1, d

∗
1), . . . , (T

∗
n , D

∗
n) = (t∗n, d

∗
n)|F,H)

= L(F )

n∏
i=1

∆H(t∗i )
1−zi [1−H(t∗i )]

zi

= L(F )L∗(H),

where L and the zi are defined as in Equation 5. Therefore, the marginal likelihood
for F is Lmarginal(F ) = L(F )EH [L∗(H)] ∝ L(F ), where the constant of proportionality
only depends on the data and EH [·] represents expectation with respect to the prior
distribution of H. As a consequence, the posterior distribution of F can be computed
ignoring the randomness in the censoring times C1, . . . , Cn by considering their observed
values as fixed and their unobserved values as fixed to +∞. Hence, if F is a priori



14 A. Arfè, S. Peluso, and P. Muliere

a subdistribution beta-Stacy process, then its posterior distribution is the same as in
Theorem 4.1.

Remark 4.3. The update-rule of Theorem 4.1 could be shown to hold under even
more general censoring mechanisms. In fact, the marginal likelihood for F remains
proportional to L(F ) as long as i) the distribution H of censoring times is independent
of F and ii) censoring only depends on the past and outside variation (Kalbfleisch and
Prentice, 2002).

5. Relation with other prior processes

5.1. Relation with the beta-Stacy process
By construction, the subdistribution beta-Stacy process can be regarded as a direct
generalization of the beta-Stacy process. In fact, the two processes are linked with each
other, as highlighted by the following theorem:

Theorem 5.1. A random subdistribution function F is a discrete-time subdistribu-
tion beta-Stacy process with parameters {(αt,0, . . . , αt,k) : t ≥ 1} if and only if i) G(t) =∑k

d=1 F (t, d) is a discrete-time beta-Stacy process with parameters {(
∑k

d=1 αt,d, αt,0) :
t ≥ 1} and ii) ∆F (t, c) = Vt,c∆G(t) for all t ≥ 1 and c = 1, . . . , k, where {Vt =
(Vt,1, . . . , Vt,k) : t ≥ 1} is a sequence of independent random vectors independent of G
and such that Vt ∼ Dirichletk(αt,1, . . . , αt,k) for all t ≥ 1 (where, if k = 1, we let the
distribution Dirichlet1(αt,1) be the point mass at 1).

Proof. The proof is provided in the on-line supplementary material.

5.2. Relation with the beta process
Suppose A(t) = (A1(t), . . . , Ak(t)) collects the cumulative hazards of the subdistri-

bution function F (t, c) and let ∆A(t) = (∆A1(t), . . . ,∆Ak(t)), A0(t) =
∑k

d=1Ad(t).
Then, following Hjort (Hjort, 1990, Section 2), a discrete time beta-process prior for
non-homogeneous Markov Chains with parameters {(αt,0, . . . , αt,k) : t ≥ 1} could be
specified for A(t) by independently letting (1 − ∆A0(t),∆A1(t), . . . ,∆Ak(t)) have a
Dirichlet(αt,0, . . . , αt,k) distribution for all t ≥ 1. In such case, from Definition 2.2
it would follow that F is subdistribution beta-Stacy with the same set of parameters.
The converse is also true, since if F is subdistribution beta-Stacy then it can be easily
seen from Definition 2.2 that (1−∆A0(t),∆A1(t), . . . ,∆Ak(t)) = (Wt,0,Wt,1, . . . ,Wt,k).
Therefore, if interest is in the subdistribution function F (t, c) itself, one should consider
the subdistribution beta-Stacy process, whereas if interest is in the cumulative hazards
A(t), one should consider the beta process for non-homogeneous Markov Chains. This
equivalence parallels an analogous relation between the usual beta-stacy and beta pro-
cesses (Walker and Muliere, 1997).

5.3. Relation with the beta-Dirichlet process
The subdistribution beta-Stacy process is also related to the discrete-time version of
the beta-Dirichlet process, a generalization of Hjort’s beta process prior (Hjort, 1990)
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introduced by Kim et al. (2012). The cumulative hazards {A(t) : t ≥ 1} are said to be a
beta-Dirichlet process with parameters {(βt,1, βt,2, γt,1, . . . , γt,k) : t ≥ 1} if i) the ∆A(t)
are independent, ii) ∆A0(t) ∼ Beta(βt,1, βt,2) for all t ≥ 1, and iii) ∆A(t)/∆A0(t) ∼
Dirichletk(γt,1, . . . , γt,k) independently of ∆A0(t) for all t ≥ 1. From Definition 2.2 it is
clear that if F (t, c) is subdistribution beta-Stacy with parameters {(αt,0, . . . , αt,k) : t ≥
1}, then from (1 − ∆A0(t),∆A1(t), . . . ,∆Ak(t)) = (Wt,0,Wt,1, . . . ,Wt,k) and Theorem
2.5 of Ng et al. (2011), then the corresponding cumulative hazards A(t) must be beta-

Dirichlet with parameters βt,1 =
∑k

d=1 αt,d, βt,2 = αt,0, and γt,d = αt,d for all d = 1, . . . , k

and t ≥ 1. The converse is not true unless βt,1 =
∑k

d=1 γt,d for all t ≥ 1.

6. Nonparametric cumulative incidence regression

In this section, we will illustrate a hierarchical subdistribution beta-Stacy regression
approach for competing risks. We assume that data are a sample of possibly-right
censored survival times and cause-of-failure indicators (t∗1, d

∗
1), . . ., (t∗n, d

∗
n). Each ob-

servation (t∗i , d
∗
i ) is associated with a known vector wi of predictors. In this context,

we assume events occur in continuous time, but their times of occurrence have been
discretized according to some fixed partition 0 = τ0 < τ1 < τ2 < · · · of the time axis.
Hence, (t∗i , d

∗
i ) = (t, d) for some d = 1, . . . , k if an event of type d has been observed in

the time interval (τt−1, τt]. Instead, (t∗i , d
∗
i ) = (t, 0) if no event has been observed during

(τt−1, τt] and censoring took place in the same interval.
We specify the model hierarchically as follows. The observations (t∗1, d

∗
1), . . . , (t

∗
n, d
∗
n)

are independent and each generated by some corresponding subdistribution function
F (t, c;wi) under some censoring mechanism, as described in Section 4. If w(1), . . . , w(m)

are the distinct values of w1, . . . , wn, then the subdistribution functions F (·;w(i)) are
also assumed to be independent and F (·;w(i)) ∼ sBS(ω, F0(·|θ, w(i))) for all i = 1, . . . ,m,
where F0(t, c|θ, wi) is some fixed parametric subdistribution function. Lastly, the pa-
rameter vector θ is also assigned a prior distribution.

In more detail, we specify the centering parametric subdistribution functions

F0(t, c|θ, wi) = F
(1)
0 (c|θ, wi)F (2)

0 (t|θ, c, wi)

using the same strategy of Larson and Dinse (1985), i.e. by separately modeling the

probability F
(1)
0 (c|θ, wi) of observing a failure of type c and the conditional time-to-event

distribution F
(2)
0 (t|θ, c, wi) given the specific failure type c. For the first, we specify a

multinomial logistic regression model

F
(1)
0 (c|θ, wi) =

exp(w′ibc)

1 +
∑k−1

d=1 exp(w′ibd)
(c = 1, . . . , k − 1),

F
(1)
0 (k|θ, wi) =

1

1 +
∑k−1

d=1 exp(w′ibd)
,

while for the second we let F
(2)
0 (t|θ, c, wi) be defined by

∆F
(2)
0 (t|θ, c, wi) = G0(τt|θ, c, wi)−G0(τt−1|θ, c, wi),
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where

G0(t|θ, c, wi) = 1− exp(−tuc exp(w′ivc))

is the cumulative distribution function of a Weibull random variable with scale parameter
exp(−w′ivc/uc) and shape parameter uc. This choice corresponds to assuming a para-
metric Weibull regression model (Aalen et al., 2008, Chapter 5) for the conditional times
to event (conditional with respect to the type of the occurring event). The parameter
vector θ is thus so formed: θ = (b1, . . . , bk−1, v1, . . . , vk, u1, . . . , uk).

For the precision parameters ωt we let

ωt =
τt − τt−1∑k

d=1 F0(τt, d|θ, wi)−
∑k

d=1 F0(τt−1, d|θ, wi)
.

Similarly to Rigat and Muliere (2012), this choice allows the model to rely on its para-
metric component over the times where observations are not available, whereas it should
allow for more flexibility over the times where most data is observed.

Finally, we specify a prior distribution for θ as follows. First, we assume all of
b1, . . . , bk−1, u1, v1, . . . , uk, vk to be independent a priori. For the regression parameters
bc and vc we specify multivariate normal distributions: bc ∼ N(bc,0,Σbc) (c = 1, . . . , k−1)
and vc ∼ N(vc,0,Σvc) (c = 1, . . . , k) for fixed vectors of Gaussian means bc,0, vc,0 and
variance-covariance matrices Σbc , Σvc (each of the appropriate dimension). For the
Weibull shape parameters uc we instead specify uc ∼ Gamma(pc, qc) (c = 1, . . . , k) for
fixed positive constants pc (shape parameter) and qc (rate parameter).

6.1. Sampling from the posterior distribution
To fix notations, let t∗ = (t∗1, . . . , t

∗
n), d∗ = (d∗1, . . . , d

∗
n), w = (w1, . . . , wn), and F =

(F (·;w(1)), . . . , F (·;w(m))). With these notations, from Lemma 2.1 and the arguments
in Section 4, under ignorable right censoring we can assume that the marginal likelihood
of θ is

P (t∗, d∗|θ, w) =

n∏
i=1

∆F0(t
∗
i , d
∗
i |θ, wi)zi

[
1−

k∑
d=1

F0(t
∗
i , d|θ, wi)

]1−zi .

Using this fact, the joint posterior distribution P (F , θ|t∗, d∗, z) of F and θ is

P (F , θ|t∗, d∗, w) ∝ P (θ)P (t∗, d∗|θ, w)
m∏
j=1

Pj(F (·;w(j))|θ, w), (6)

where P (θ) represents the prior distribution of θ (which is independent of w) and
the term Pj(F (·;w(j))|θ, w) represents the posterior distribution of the subdistribution
F (·;w(j)) ∼ sBS(ω, F0(·|θ, w(j))) obtained (for fixed θ) from the data Dj = {(t∗i , d∗i ) :
wi = w(j), i = 1, . . . , n} using the update rule described in Theorem 4.1.

Now, although the posterior distribution for θ is not available for exact sampling,
Equation (6) suggests the use of a Markov Chain Monte Carlo strategy such as the
following to perform approximate posterior inferences. First, a sample {θi}Si=1 from the
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marginal posterior distribution of θ is obtained, after discarding an appropriate num-
ber of burn-in iterations, via a Random Walk Metropolis-Hastings algorithm (Robert
and Casella, 2004, Section 7.5). A multivariate Gaussian distribution can be considered
after the reparametrization induced by a logarithmic transformation of each shape pa-
rameter uc (to account for their positive support). Second, having obtained a sample
{θi}Si=1 as just described, the conditional posterior distribution of F (·;w(j)) given θi and
the data Dj is obtained by direct simulation for all i = 1, . . . ,M and j = 1, . . . ,m.
Specifically, the parameters of the conditional posterior distribution Pj(F (·;w(j))|θ, w)
of F (·;w(j)) given θi and Dj are obtained using Theorem 4.1. Then a sample Fi(·;w(j))
from Pj(F (·;w(j))|θ, w) is obtained using Definition 2.2 by sampling from the relevant

Dirichlet distributions. The sample {(θi, Fi(·;w(1)), . . . , Fi(·;w(m)))}Si=1 so obtained then
represents a sample from the joint posterior distribution of Equation (6).

6.2. Estimating the predictive distributions
Let Tn+1 and Dn+1 be the unknown uncensored survival time and type of realized
outcome, respectively, for a new individual with covariate profile wn+1. The objec-
tive if to estimate the predictive distribution of (Tn+1, Dn+1) given the data (t∗1, d

∗
1),

. . ., (t∗n, d
∗
n). We distinguish two cases: i) wn+1 = w(j) for some j = 1, . . . ,m, and

ii) wn+1 6= w(1), . . . , w(m). In the first case, simply obtain a sample {Fi(·;wn+1) =

Fi(·;w(j))}Si=1 from the posterior distribution of F (·;w(j)) using the output of the pro-
cedure described above. The predictive distribution of (Tn+1, Dn+1) is then estimated

as S−1
∑S

i=1 Fi(·;wn+1). In the second case it is still possible to estimate the predic-
tive distribution of (Tn+1, Dn+1) by recycling the sample {θi}Si=1. Specifically, for each
θi, Fi(·;wn+1) is simulated directly from the sBS(ω, F0(·|θi, wn+1)) distribution. The
predictive distribution of (Tn+1, Dn+1) is then estimated as the average of the sampled
subdistribution functions, as before.

7. Application example: analysis of Amsterdam Cohort Studies data

7.1. Analysis objectives and data description
As an illustration, we consider the problem of assessing the long-term prognosis of HIV
infected men with respect to the risk of AIDS onset (event of type 1) or SI onset (event
of type 2), considered as competing events, as a function of two predictors: i) CCR5
genotype, with possible values WW (wild type allele on both chromosomes) or WM
(mutant allele on one chromosome), or ii) age at HIV infection. With this aim, we
analyse data on 324 men who participated in the Amsterdam Cohort Studies on HIV
infection and AIDS. These data are freely available in the aidssi2 dataset of the mstate
R package (de Wreede et al., 2011) and are described in more detail by Geskus et al.
(2003) and Putter et al. (2007). For our purposes, each patient was followed-up from
the date of HIV infection to the earliest among the dates of AIDSs onset, SI phenotype
onset, or right censoring, i.e. death, study drop-out, or end of the study period (July
2006, when highly-active antiretroviral therapy became widely available). A total of 65
(20.1%) patients had a WM genotype, while mean age at HIV infection was about 34.6
years (s.d., 7.2 years). Overall, the 324 patients accumulated 2262.2 person-years of
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follow up (minimum - maximum follow-up: 0.1 years - 13.9 years), generating 117 cases
of AIDS onset and 107 cases of SI onset.

7.2. Model specification and prior distributions
We consider two separate regression models, both specified as explained in Section 6. In
the first model, only the indicator of WM CCR5 genotype is considered as predictor and
are inserted in the model (together with an intercept term). In the second model, the
indicator for WM CCR5 genotype, the age at HIV infection (centered about its mean
and considered as a simple linear term), as well as an interaction term between CCR5
genotype and age at infection inserted in the model (again together with an intercept
term). For all hyperparameters bc, vc, and uc of these two models, we consider the
following prior specifications. First, for all vectors of regression parameters bc and vc
we specified independent N(0, I) multivariate normal prior distributions, where I is the
identity matrix of the appropriate dimensions. Second, for all the Weibull shape param-
eters uc we instead consider independent Gamma(2, 2) prior distributions. Numerical
simulations reported in the on-line supplementary material suggest that these choices
yield fairly diffuse prior distributions for the subdistribution function of both models.

7.3. Posterior analysis
For both models, posterior inference was performed by a Random Walk Metropolis-
Hastings algorithm with a multivariate Gaussian proposal distribution as suggested in
Section 6, by means of the MCMCpack R package Martin et al. (2011). The proposal
distribution was centered at the current sampled value, with a proposal covariance matrix
equal to the negative inverse Hessian matrix of the log-posterior distribution, evaluated
at the posterior mode and scaled by (2.4)2/d, where d is the dimension of θ, as suggested
by Gelman and Meng (1998, Section 12.2). To improve mixing, all predictors were
standardized before running the algorithm. All parameters were initialized at 0, except
for each uc, which were initialized at 1. In all cases, the Metropolis-Hastings algorithm
was run for a total of 26000 iterations: the first 1000 were discarded as burn-in, while
the remaining 25000 were thinned by retaining only one generated sample every 25
iterations. Convergence was assessed by means of Geweke’s test (Geweke, 1992) and
visual inspection of the trace plots.

The Markov Chain Monte Carlo algorithm converged fairly quickly with an accep-
tance rate of about 20% for both models. The estimated autocorrelation functions, trace
plots, and posterior density estimates for both models, as well as posterior summaries
and Geweke’s diagnostic p-values for the second model are reported in the on-line sup-
plementary material. The results were found to be fairly robust when different prior
distributions were considered (data not shown). Additionally, the obtained posterior
distributions were found to be much more concentrated than the considered prior dis-
tributions (see the on-line supplementary material). The R code used to perform the
analyses is available on request from the authors.

The posterior summaries for the hyperparameters of the model including only the
WM CCR5 genotype indicator as predictor are reported in the on-line supplementary
material. These suggest that individuals with the WM genotype are at a lower risk of de-
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veloping AIDS instead of SI at any time compared with individuals with WW genotype
(estimated log-odds ratio and 95% credible interval: −0.51 (−1.55, 0.48)). Additionally,
both among individuals who develop AIDS or SI, the WM genotype seems to be asso-
ciated with a decreased instantaneous hazard of experiencing the onset of the disease,
although for SI this finding is affected by a higher uncertainty (estimated log-hazard
rates and 95% credible intervals: −0.52 (−0.94,−0.08) for AIDS, −0.35 (−0.85, 0.22)
for SI). The estimated shape parameters indicate that for both AIDS and SI, the condi-
tional time to disease onset distribution is characterized by an increasing instantaneous
hazard (estimated shape parameters and 95% credible intervals: 2.03 (1.70, 2.44) for
AIDS, 1.43 (1.17, 1.78) for SI).
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Fig. 2. Posterior predictive distributions (i.e. posterior expectations of the subdistribution func-
tions) obtained from the subdistribution beta-Stacy regression model including the CCR5 geno-
type as predictor, with 95% pointwise credible bands for the subdistribution function (top), and
classical nonparametric estimatates of the subdistribution functions (bottom).

Figure 2 shows the posterior predictive distributions, i.e. the posterior expectations of
the subdistribution functions, obtained from the subdistribution beta-Stacy regression
model including the CCR5 genotype as predictor, as well as the estimated subdistri-
bution functions obtained from the classical nonparametric estimators. Both sets of
estimates are in good agreement for all times up to about 14 years since HIV infection,
i.e. the maximum observed time. This was to be expected, since in the range of the ob-
served data the specified subdistribution model is mostly driven by the data through the
classical nonparametric estimators. Note, however, that our estimates avoid the unreal-
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istic shape characterizing the classical estimators, which are defined as constant over the
time periods between successive uncensored observations. Furthermore, after the max-
imum observed time in the data, the classical nonparametric estimators are undefined,
restricting their usefulness for evaluating the long-term prognosis. Instead, by relying
more on its parametric component, the subdistribution beta-Stacy model provides an
extrapolated prognostic risk estimate beyond the range of observed event times.
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Fig. 3. Posterior predictive distributions obtained from the subdistribution beta-Stacy regres-
sion model including both the CCR5 genotype and age at HIV infection as predictors for four
hypothetical patients characterized by the following ages at HIV infection: 20 years (dot-dashed
curve), 40 years (dotted curve), 60 years (dashed curve), and 80 years (continuous curve).

Figure 3 shows the posterior predictive distributions obtained from the subdistribu-
tion beta-Stacy model including both the CCR5 genotype and age at HIV infection as
predictors for four hypothetical patients respectively characterized by an age at HIV
infection of 20, 40, 60, and 80 years. This analysis suggests that age at HIV infection
may be an important prognostic factor for both individuals with WW or WM CCR5
genotype. In fact, the posterior predictive distributions suggest that time to AIDS onset
or SI onset is delayed in younger HIV infected men compared with older infected men.
Additionally, these results also highlight how prognosis may be widely heterogeneous
depending on both CCR5 genotype and age at HIV infection.
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8. Concluding remarks

The approach developed in this paper is amenable to several potential generalizations.
First, other reinforced urn schemes could be contemplated. For example, each extracted
ball may be reinforced by a general amount m > 0 of new similar balls, instead of just
one as considered in this paper. More generally, the value m may also be allowed to
be a random variable depending on the color of the extracted balls, as in Muliere et al.
(2006). In general, urn-based schemes represent a useful tool to characterize different
process priors on the space of subdistribution functions from a predictive point of view.
From this perspective, we are currently investigating the predictive characterization
of the beta-Dirichlet process prior described in Section 5. Second, a continuous-time
generalization of the subdistribution beta-Stacy process could be considered. We are
currently developing a characterization of such process from a predictive perspective
by means of the continuous-time urn models of Muliere et al. (2003) and Bulla and
Muliere (2007) in a similar way as done in this paper. Third and last, a generalization of
the reinforced urn process considered in Section 3 could be attempted to characterize a
process prior on the space of transition kernels of a Markovian multistate process. Such
process could be useful for the predictive Bayesian nonparametric analysis of event-
history data (Aalen et al., 2008) and it will be the subject of our future work.
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