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Abstract

In this paper we propose a novel class of indices derived from polarization
measures useful to compare survival predictive models. More precisely, the
main aim of this paper is to review the most relevant performance measures
aimed to assess temporal dependent models and to underline how polariza-
tion measures can be useful for model comparison. Our idea could be of
interest for a wide range of applications where temporal dependent models
can be employed. Finally, after a theoretical discussion we test our proposal
on real data related to churn risk.

Keywords: ROC curve, survival models, polarisation, model selection,
churn risk

1. Introduction

A large number of applications fall into the framework of predictive clas-
sification. In such problems the aim is to construct the best predictive model
using a set of data. One of the important issues in performance evaluation
is that of which criterion to choose to measure classifier performance. In
the literature a wide range of performance indicators are available, such as
the misclassification (or error) rate, the Kolmogorov-Smirnov (KS) statistic,
likelihood ratios, the area under the ROC curve (or, equivalently, the Gini
coefficient), pairs of measures such as specificity and sensitivity or precision
and recall, measures of accuracy of probability estimates such as Brier or log
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score, and many others (see, for example, Flach, 2003; Hand, 1997; Dodd
and Pepe, 2003).
The most popular index recognized in the literature is the AUC (Area Under
the ROC Curve). The AUC is a single number derived from a classification
rule, so that comparisons of classification rules can be made in a straight-
forward way. It is objective, requiring no choices of parameter values to be
made by the user, so that different researchers would obtain the same results
from the same data. However, it also has some well-known weaknesses (see
Gigliarano et al. 2014). For example, if ROC curves cross then it is possible
that one curve has a larger AUC (and so is apparently better) even though
the alternative may show superior performance over almost the entire range
of values of the classification threshold (defined below) for which the curve
will be used. In many practical applications, it is likely that the ROC curves
being compared will cross. One reason for this is that comparisons are likely
to be between classifiers with similar performance. As discussed in Hand
(2009), in many situations, an empirical process of classifier improvement is
undertaken, adjusting the classifier a small step at a time so as to gradu-
ally improve the KS, AUC, or whatever performance measure is being used.
The result is a series of comparisons between similar classifiers, which are
therefore likely to have similar ROC curves. When curves are similar, it is
unlikely that one will dominate another - unlikely that one will have a supe-
rior sensitivity for all choices of specificity.
The risks of comparing classifiers on the basis of simple summary measures
which fail to take account of the potential for ROC curves to cross are well-
known. Having noted this weakness of the AUC as a measure of classifier
performance, in Gigliarano et al. (2014) are presented alternative measures
to compare predictive models characterized by a binary dependent variable.
Starting from the contribution of Gigliarano et al. (2014), this paper ex-
tend model comparison for temporal dependent models proposing a novel
class of polarization measures. The paper is structured as follows: Section
2.1 describes in general the problem of model assessment and performance
indicators for survival models; Section 2.2 briefly reviews the polarization
measures; Section 3 shows the novel class of polarization based discrimina-
tion indexes useful to compare predictive models for survival data; Section 4
discusses the results from an illustrative application to churn risk and, finally,
Section 5 underlines the conclusions and further ideas of research.
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2. Background

2.1. Measuring the predictive accuracy of survival models

Let us consider a binary response setting, where D is the status indicator,
with D = 1 if the subject developed an event of interest within a given period
of time (such as, e.g., having a default) and or D = 0 otherwise .
Let the dependence between a covariates vector X and the condition of being
bad be specified through a given binary model (i.e. logistic regression); z(X)
is the linear predictor, where greater values of z(X) indicate grater predicted
probability of being bad (i.e. having a default).
The model predictor can be thought as a test, any value v of z(X) defines
a prediction rule to classify a subject as bad if z(X) > v, or as good if
z(X) ≤ v. The probabilities of correct classification conditional on the status,
i.e. sensitivity P (z(X) > v|D = 1) and specificity P (z(X) ≤ v|D = 0) at v,
represent the predictive accuracy of the rule.
The ROC curve is the plot of sensitivity against the complement to one of
the specificity (varying v), and represents the accuracy of the whole set of
rules; see Figure ??. The area under the ROC curve (AUC) is a summary
accuracy index, which is equal to:

AUC = P (z(Xi) > z(Xj)|Di = 1 ∧Dj = 0) (1)

where (i, j) denote any pair of randomly chosen subjects, and the symbol
∧ represents the logical conjunction “and”. See, among others, Krzanowski
and Hand (2009), Pencina and D’Agostino (2004, 2008).
Let us now consider a survival time setting, where (T,D) denote the random
variables of concern. Let T = min(TS, TC) be the observed time, where TS
is the failure time and TC is the right censoring time. Typically, in practical
applications a discrete time scale is considered (days, weeks, months etc.).
Therefore T can be considered as a discrete random variable, that assume
values t(1) < . . . < t(K), where t(K) is the end of the study period. D is the
status indicator, D = 0 if T = TC or D = 1 if T = TS.
Let the dependence between a vector of fixed covariates X and TS be spec-
ified through a given survival model. In the absence of censoring, for any
pair of subjects (i, j), labelled such as TSi < TSj, a desirable property of
the model is to have the same ranking between the corresponding predicted
times. In such a case, the pair is said to be concordant and the probability
of concordance is a natural indicator of model discrimination.
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In the light of this idea, the popular Harrell C index of discrimination eval-
uates the probability of concordance addressing for the presence of right
censored times (see Harrell et al.,1982). The Harrell C concordance index is
related to the area under the ROC curve (see e.g. Heagerty and Zheng 2005)
and the relative interpretation as a misclassification probability appears as
particularly attractive.
The starting point to define whether the subjects (i, j) are concordant is that
they are comparable, meaning that their survival times TSi and TSj can be
ranked. The ranking between TSi and TSj can be determined from the ob-
served data (Ti;Di) and (Tj;Dj) if and only if the minimum between Ti and
Tj is an event time, i.e. if Ti < Tj and Di = 1 or Ti > Tj and Dj = 1. Thus,
assuming the subjects are labelled such as Ti < Tj, they are comparable if
and only if Di = 1, arguing that TSi < TSj. The probability that (i, j) are
comparable is πcomp = P (Ti < Tj ∧Di = 1) where the presence of censored
times is considered as a population characteristic and is included in the def-
inition of πcomp.
Considering a proportional hazard model, i.e. log(h(t(k)|X) = z(X)+log(h0(t(k))
for k = 1, . . . , K, where h(t(k)|X) is the hazard of an individual having co-
variate equal to X, h0(t(k)) is the baseline hazard and z(X) the model linear
predictor, C can be defined without the need of predicting individual sur-
vival times. The ranking between the predicted times is obtained resorting
to the linear predictors, since the inequality z(Xi) > z(Xj) is equivalent to
S(t(k)|Xi

) < S(t(k)|Xj
) for any t(k), and this implies a smaller predicted time

for the subject i.
Thus, in the absence of censoring, any pair (i, j), labelled such that Tsi < Tsj,
is concordant if and only if z(Xi) > z(Xj). In the presence of censoring, the
C index is the probability that (i, j) are concordant given that they are
comparable:

C = Pr{z(Xi) > z(Xj)|Ti < Tj ∧ Di = 1} =
πconc
πcomp

(2)

where the numerator is the probability of concordance πconc = P ((z(Xi) >
z(Xj))∧ (Ti < Tj)∧ (Di = 1)). In analogy with AUC, Harrell C index ranges
from 0.5 to 1 and has the same interpretation.
An alternative definition of C index was given (Klawonn et al., 2011) for a
survival model which specifies the relation between a vector of possibly time
dependent covariates X(t) and Ts, originating a one to one correspondence
between predicted times and predicted survival probabilities at any point t.
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This is guaranteed for proportional hazard models, and for a more general
class of transformation models. It has to be pointed out, as in the absence of
a specification about how to predict individual survival times, the ranking be-
tween S(t|Xi(t)) and S(t|Xj(t)) is possible if and only if the survival functions
are separated over the whole time. Thus, i has lower predicted time than j
if and only if S(t|Xi(t)) < S(t|Xj(t)) for any t. Therefore, the probability of
concordance becomes πconc = P (S(t|Xi(t)) < S(t|Xj(t)) ∧ Ti < Tj|Di = 1)
and the C index becomes

C =
πconc
πcomp

= P (S(t|Xi(t)) < S(t|Xj(t))|Ti < Tj ∧Di = 1) (3)

Assuming, instead, of dealing with survival models in the more general
framework where the one to one correspondence does not necessarily hold
(see, e.g., Antolini et al., 2005) . A basic notation is introduced referring
to discrete times. Let D(t(k)) be the status at time t(k); more precisely,
D(t(k)) = 1 if the subject experiences event at t(k), D(t(k)) = 0 if does not
experience event until t(k) and D(t(k)) is not defined if subject is not at
risk at t(k). To evaluate the model ability to discriminate among subjects
at risk at tk, between churned and non churned till tk, the predicted sur-
vival probability S(t(k|X(t)) is the natural quantity to consider. In this case,
the probabilities of correct classification conditional on the status at t(k),
i.e. sensitivity Pr{S(t(k)|X(t)) ≤ v|Dj(t(k)) = 1} and dynamic specificity:
Pr{S(t(k)|X(t)) > v|Dj(t(k)) = 0} represent the accuracy of the rule, and
the area AUC(t(k)) under the corresponding ROC curve:

AUC(t(k)) = Pr{S(t(k)|Xi(t)) < S(t(k)|Xj(t))|Di(t(k)) = 1 ∧Dj(t(k)) = 0}
(4)

represents the ability of discrimination of S(t(k)|X(t)). To summarize the
ability of S(t(k)|X(t)) to discriminate between D(t(k)) = 1 and D(t(k)) = 0
over the whole follow-up a weighted average of AUC(t(k)) over time can be
written as follows:

Ctd =

∑K
k=0AUC(t(k)) · w(t(k))∑K

k=0 w(t(k))

= P (S(Ti|Xi(t)) < S(Ti|Xj(t))|Ti < Tj&Di = 1)

where w(t(k)) = Pr{Di(t(k)) = 1 &Dj(t(k)) = 0} is the probability of com-
parable pairs. It is worth of note as w(t(k)) is the same weighting system
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adopted in the derivation of the Harrell’s C as weighted average over time of
time dependent accuracy.
Let us observe as the difference between C and Ctd is that in the latter the
predicted survival is evaluated in Ti, which indeed depends on (i, j), instead
on a fixed t. Ctd is the probability that (i, j) are concordant given they are
comparable. More specifically, given a comparable pair (i, j), labelled such
as Ti < Tj and Di = 1, a desirable property of the model is that the predicted
survival probability, at the time where the subject i developed the event, is
greater for the subject j who actually is still free from the event. We refer
this condition as ’td concordance’. If the one to one correspondence holds,
Ctd reduces to the Harrell’s C.
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Figure 1: Example of ROC curve

Summing up, the well-known Harrell’s C measure for assessing the predic-
tive accuracy of survival models is a measure of concordance between model
predictions and status indicator. This measure is based only on rankings
and not on the differences in survival times. In the next sections we rather
propose to assess the discriminative ability by looking also at differences in
survival times, recurring, in particular, to indices of polarization.
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2.2. Measuring polarization

Polarization is commonly connected with the division of a society into
groups as possible cause of social conflicts. It is measured by quantifying and
comparing socio-economic disparity, not only in terms of differences among
individuals (as inequality measurement does) but also in terms of differences
among population groups.
Based on the seminal papers by Esteban and Ray (1994) and Wolfson (1994),
two different strands of the literature have emerged, underlining different as-
pects of the phenomenon of income polarization. The first string, originat-
ing from Esteban and Ray (1994), focuses on the rise of separated income
groups: polarization increases if the groups become more homogeneous inter-
nally, more separated from each other and more equal in size. This approach
is followed, among others, by Gradin (2000), D’Ambrosio (2001), Duclos et
al. (2004).

The second strand, going back to Wolfson (1994), describes the decline
of the middle class, measuring how the center of the income distribution is
emptied. This approach is often referred to as “bi-polarization” and assumes
the presence of only two groups which are divided by the median income.

In general most of the existing contributions to polarization measurement
mainly focus on income, being income the characteristic both that forms
groups and that distinguishes individuals and groups from each other. In
contrast, Zhang and Kanbur (2001) and Gradin (2000) derive polarization
measures that allow for other characteristics than income to form groups and
for income to measure polarization among those exogenously formed groups.

Let us first introduce some notation. Let x = (x1, . . . , xn) be a vector
of incomes for a given population of size n and with mean x̄. Now suppose
that the population can somehow be separated into k groups and let xj =(
xj1, . . . , xjnj

)
be the income vector of individuals belonging to group j, x̄j

be the corresponding mean income and
nj

n
the population share of group j,

j = 1, . . . , g.
Esteban and Ray (1994) set up a system of four axioms and derive the

following polarization measure

PER(x) = K

g∑
j=1

g∑
l=1

(nj
n

)1+α

· nl
n
· |x̄j − x̄l| , (5)

where K > 0 is a normalizing constant and α ∈ (1;α∗], α∗ ≈ 1.6 is
the so called polarization sensitivity. Note that the inclusion of α makes
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the difference between polarization and inequality in this approach, since for
α = 0 and K = 1

2·x̄·n2 expression (??) gets back to the Gini index.1

Since PER(x) does not incorporate any within-group heterogeneity, Es-
teban et al. (2007) proposed an extension of the original index that is func-
tion also of within-group Gini index. Esteban et al (2007) recommend that
their measure should be applied after the original vector of incomes has
been grouped by a statistical approach that minimizes within-group disper-
sion. Gradin (2000) proposed the same correction term to the original index,
though in his approach groups can be defined according to variables differ-
ent from income, being – at least to our knowledge – the first measure of
“socioeconomic” polarization.

The second strand of the literature on income polarization is based on the
polarization measure of Wolfson (1994). Additional to the existing notation,
let m denote the median of the income vector x and L(z) be the value of the
Lorenz curve at the z-quantile of x. Wolfson (1994) proposes a polarization
curve analogous to the Lorenz curve for inequality measurement and defines
his polarization measure to be

PW (x) =
2x̄

m
· (1− 2 · L(0.5)−G) =

2x̄

m
· (GB −GW ) , (6)

whereG,GW andGB are, respectively, the total, the within- and the between-
group Gini indices.

Therefore, the Wolfson polarization measure is a normalized function of
the difference between the inequality between groups GB and the inequality
within groups GW .

Summing up, the Wolfson measure can be used in case of two non-
overlapping groups, while the Esteban and Ray index is suitable for a generic
number of groups, also overlapping.

3. Methodology: a polarization-based discrimination index

As discussed above, predictive accuracy of survival models are usually
assessed using Harrell’s C measure, which is a measure of concordance be-

1Being precisely, for α = 0 we would obtain the Gini index for classified data. This
is because Esteban and Ray (1994) argue that an individual feels perfect identification
with each member of his or her own subgroup, regardless of possible income differences.
Therefore, each income of a group can be replaced by the respective group mean.
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tween model predictions and status indicator. This measure is based only on
rankings and not on the differences in survival times.

Here we propose to assess the discriminative ability of survival models by
looking also at differences in survival times, in particular at the polarization
in the predicted survival times, based on the overlap of the groups. In this
way we are able to capture a different set of information.

Following the Esteban and Ray (1994) approach, discussed above, the
distribution of a random variable, such as survival time, is said to be polar-
ized in case of rise of groups well separated and with low disparity inside.
Polarization is, therefore, characterized by three features: high homogene-
ity within each group, high heterogeneity across groups, small number of
significantly sized groups.

Absence of polarization in the predicted failure times reveal a weak dis-
criminatory power, while strong polarization suggest that the survival model
has high predictive accuracy.

If the distributions of the predicted survival times (or predicted probabili-
ties of survival) do not overlap, it means that the model perfectly discriminate
the individuals (see, for example, Figure ??). The higher the degree of over-
lap, the worse is the survival model. The case of perfect discrimination would
correspond to the case of maximum bi-polarization (therefore, zero overlap).

We propose to apply polarization indices in survival analysis to mea-
sure concentration in the predicted probabilities of survival within groups
of subjects and to detect differences in heterogeneity between the predicted
survival probabilities of two groups of subjects. Differences in concentration
between groups may suggest the presence of a differential covariates effect,
thus providing information of the discriminative power of a survival model.

Analogously to Section 2, let T denote the time to some failure of interest,
with possible right-censoring: T = min(TS, TC). We follow individuals for a
given period of time, until t(K). We consider a statistical model that provides
the predicted survival time for each individual. At each given point in time
t(1) ≤ ... ≤ t(k) ≤ ... ≤ t(K), we have two categories of subjects: those
who developed the event before t(k) (events) and those who did not (non-
events). For any t(k), D(t(k)) denotes the status at (or until) t(k), where
D(t(k)) = 1 if the individual experiences the event at t(k) and D(t(k)) = 0 has
not experienced the event until t(k). D(t(k)) is not defined if the individual is
not at risk at t(k). Therefore, for each time t(k), we have the group G1(t(k)) of
the subject who experience the event at time t(k) (or the group of bad items)
and the group G0(t(k)) of the subject who have not experienced the event
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Figure 2: Example of distribution with a high level of polarization

x	  

f(x)	  

Group	  0	   Group	  1	  

until t(k) (or the group of good items).
Let T1, T2, ..., Tn be the actual survival times and Z1(t), Z2(t), ..., Zn(t) the
corresponding predicted probabilities of survival at t for a sample of size
n. Note that in the most common survival models we can interchange the
predicted survival times and the predicted probabilities of survival.

Following the Esteban and Ray’s approach as defined in expression (??),
we define a polarization-based measure of the discriminatory power of the
survival model at time t(k) as

PER(t(k)) = K

((n0

n

)1+α n1

n
+
(n1

n

)1+α n0

n

)(∣∣Z̄0(t(k))− Z̄1(t(k))
∣∣) , (7)

where nj and Z̄0(t(k)) are, respectively, the size and the average predicted
probability of group Gj(t(k)) for j = 0, 1. Moreover, K > 0 is a normaliza-
tion constant and α ∈ (1; 1.6] measures polarization sensitivity.
A continuous diagnostic test has a good performance (in terms of discrim-
ination) if the inequality of the predicted probabilities for the the group of
bad items G1 is smaller than the inequality of the predicted probabilities for
the the group of good items G0, meaning that the model attaches on average
smaller predicted probabilities of survival to the bad and higher predicted
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probabilities of survival to the bad.
Higher values of PER(t(k)) reveal high discriminatory power of the survival

model at time t(k).
We propose to synthesize the overall predictive accuracy in a single time-

independent measure of the discrimination performance of a predictor for the
whole follow-up, by considering:

T =

∫ ∞
0

PER(t)w(t)dt.

This time-independent measure of discrimination is a time-dependent
weighted mean. We follow the proposal by Lambert and Chevret (2013),
by considering as time-dependent weights w(t) the marginal density of fail-
ure times, that is w(t) = f(t). Since practical analyses typically consider a
restricted time range (tmin, tmax), we restrict also the overall measure T as
follows:

Tr =

∫ tmax

tmin

PER(t)wr(t)dt,

where wr(t) = f(t)∫ tmax
tmin

f(t)dt
. Since f(t)dt = −dS(t), where S(t) is the survival

function, hence the previous expression becomes

Tr = − 1

S(tmin)− S(tmax)

∫ tmax

tmin

PER(t)dS(t), (8)

A nonparametric estimator for Tr could be

T̂r =
1

Ŝ(tmin)− Ŝ(tmax)

K∑
k=0

P̂ER(t(k))(Ŝ(t(k)−1 − Ŝ(t(k)),

where Ŝ(t) is the Kaplan-Meier estimator of the survival function and T̂ (t)
is a nonparametric estimator of the overall index of discrimination.

The survival model discriminates well between the two groups, if the
overall index (??) is significantly greater than zero.

4. An application to churn risk

Our case study concerns a media service company. The main objectives of
such a company are to maintain its customers, in an increasingly competitive
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market, and to reduce the churn risk of such customers, by carefully designing
appropriate marketing actions. A variety of statistical techniques arising
from medical survival analysis can be applied to tenure modeling and churn
risk analysis (see e.g. Andreeva and Crook 2005; Backiel et al. 2016; Im et
al.2012). In this section we look at tenure prediction using classical survival
analysis based on Cox regression models and compare it with non parametric
techniques based on Random Survival Forest. The tenure prediction models
we have developed generate, for a given customer, a hazard curve or a hazard
function, that indicates the probability of cancellation at a given time t in
the future. A hazard curve can be converted to a survival curve or to a
survival function which plots the probability of survival (non-cancellation)
at any time, given that the customer was alive (active) at time t-1.

In our application at hand, in order to build a survival analysis model,
we have constructed two variables: one variable of status (distinguishing
between active and non active customers) and one of duration (indicator
of customer seniority) . The data set is composed of 17,000 observations.
The explanatory variables employed to run the Cox Model and the Random
Survival Forest are: socio- demographic information about the customers;
information about their contractual situation and about its changes in time;
information about contacting the customers (through the call centre, promo-
tion campaigns, etc).
The variables regarding customers contain demographic information (age,
gender, marital status, location, number of children, job and degree) and
other information about customer descriptive characteristics: hobbies, pc
possession at home, address changes. The variables regarding the contract
contain information about its chronology (signing date and starting date,
time left before expiration date), its value (fees and options) at the begin-
ning and at the end of the survey period, about equipments needed to use
services (if they are rented, leased or purchased by the customer) and binary
variables which indicate if the customer has already had an active, cancelled
or suspended contract. There are also information about invoicing (invoice
amount compared to different period of time 2, 4, 8, 12 months). The vari-
ables regarding payment conditions include information about the type of
payment of the monthly subscription (postal bulletin, account charge, credit
card), as well as other info about the changes of the type of payment. The
data set used for the analysis also includes variables that provide informa-
tion about the type of the services bought, about the purchased options, and
about specific ad-hoc purchases, such as number and total amount of spe-
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Figure 3: Cox model: Kernel density estimation of the predicted probabilities of survival
at time t(k), by groups
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cific purchases during the last month and the last 2 months. The variables
regarding contacts with the customer contain information about any type
of contact between the customer and the company (mostly through calls to
the call centre). They include many types of calling categories (and relatives
sub-categories). They also include information about the number of ques-
tions made by every customer and temporal information, such as the number
of calls made during the last month, the last two months and so on.
In order to show how our proposal works, it is necessary to evaluate the
models, besides the statistical aspects, also by comparing the potential ad-
vantages using one model rather than another.
We have discretized the survival times in t = (3, 6, 9, 12, 15, 18, 24, 36, 72)
months. Figures ?? and ?? illustrate the group-specific kernel density esti-
mates of the predicted probabilities of survival at each fixed time for Cox
model (Figure ??) and for the Random Survival Forest (Figure ??). We note
that both models differentiate more the groups as time t(k) increases.

The temporal dependent models implemented (Cox regression models
and Random Survival Forest) have been evaluated in terms of performance
indicators able to reflect the time dependent nature of data. For each time
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Figure 4: RSF model: Kernel density estimation of the predicted probabilities of survival
at time t(k), by groups
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t = (3, 6, 9, 12, 15, 18, 24, 36, 72), we have computed the Harrel C concordance
index defined in expression (??), the time-dependent AUC(t) defined in (??),
and our proposal of polarization-based discrimination index PER(t) as in
(??). Results are shown in Table ?? and Figure ??. We note that the AUC
measure prefers the Random Survival Forest for each period of time, while the
opposite result is obtained if looking at the Harrell C measure. Differently,
the measure PER(t) that we have proposed, which is based on the values
of the estimated predicted probabilities rather than their rankings, does not
seem to detect differences in the two survival models.
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Figure 5: Time dependent model comparison, using different discrimination indices
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Table 1: Comparing discrimination indices

t3 t6 t9 t12 t15 t18 t24 t36 t72

Cox
PER(t) 0.750 0.445 0.3788 0.143 0.090 0.149 0.012 0.354 0.335
AUC(t) 0.851 0.911 0.956 0.924 0.910 0.898 0.870 0.793 0.739
Harrell C 0.957 0.964 0.967 0.947 0.946 0.948 0.947 0.936 0.903

RSF
PER(t) 0.825 0.477 0.379 0.484 0.324 0.262 0.104 0.144 0.450
AUC(t) 0.917 0.952 0.961 0.973 0.951 0.919 0.914 0.919 0.884
Harrell 0.981 0.976 0.972 0.946 0.943 0.941 0.931 0.916 0.879

5. Conclusion

In this paper we have revised statistical indexes to compare the accuracy
of temporal models and we have proposed a novel class of discrimination
measures particularly interesting to assess predictive models based for sur-
vival data. More precisely using polarization indexes we are able to measure
concentration in the predicted probabilities of survival within groups of sub-
jects and to detect differences in heterogeneity between the predicted survival
probabilities of two groups of subjects.
Furthermore, differences in the concentration between groups may suggest
the presence of a differential covariate effects, thus providing information of
the discriminative power of a survival model.
The empirical results at hand underline that the novel class of indexes is
more informative with respect to the indexes of performance proposed in the
literature to compare survival models. Future works might consider alterna-
tive measures of polarization, such as overlap measures or extensions of the
Wolfson index in case of two overlapping groups.
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