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Abstract

In this article we develop a nonparametric Bayesian approach to

prediction for the M/G/1 queue, focusing on the imbedded semi-

Markov process of the queue at the departure times. Our approach

is motivated by queues with a large number of data points and high-

frequency systems, where times consuming MCMC/ABC algorithms

might be infeasible and a nonparametric approach is desirable to avoid

parametric assumptions. We define a reinforced stochastic model for

the analysis of the M/G/1 queue through a system of predictive dis-

tributions. Using the theory of partial exchangeable processes, we

prove that the reinforced stochastic process is the predictive proba-

bility model of a Bayesian semi-Markov mixture model. This result

enabled fast and scalable Bayesian nonparametric prediction based on

the reinforced stochastic process.
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1 INTRODUCTION

In this article we develop a nonparametric Bayesian approach to fast and

scalable prediction for a single counter queueing system with a Poisson ar-

rival process and a general service-time distribution G, called the M/G/1

queue.

Queueing systems are a useful class of models for a variety of applied

problems, including internet traffic, parcel services, telecommunication, cloud

computing and operations research. Most inference and prediction methods

for queueing processes utilize the frequentist paradigm (Jain and Templeton,

1988; Pitts, 1994; Teugels and Vanmarcke, 1994). The Bayesian approach to

the analysis of queueing systems has recently gained popularity and modern

Markov-Chain Monte-Carlo (MCMC) methods enable simple, but compu-

tational demanding implementation. Bayesian analysis of queueing systems

includes (Armero, 1985; McGrath and Singpurwalla, 1987; Armero and Ba-

yarri, 1994b,a, 1996; Armero and Conesa, 2000, 2006) for Markovian queues

and (Wiper, 1998; Butler and Huzurbazar, 2000; Insua et al., 1998; Wiper

et al., 2001; Ausin et al., 2004) for the analysis of non-Markovian queueing

systems, where either the inter-arrival time or the service-time distribution

is non-exponential. Moreover, (Ausin et al., 2008; Sutton and Jordan, 2011)

discussed Bayesian methods for the general G/G/1 queues and queueing

networks.

In the current work we introduce a Bayesian nonparametric predictive

approach to the analysis of the M/G/1 queue. The queueing model has been

treated previously in a Bayesian semi-parametric approach in (Ausin et al.,
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2004) and in a nonparametric Bayesian fashion in (Conti, 1999, 2004). In

(Conti, 1999, 2004) the author discussed a queue with discrete arrival and

service-times, whereas we focus on a nonparametric analysis for continu-

ous arrival time and an arbitrary service-time distribution. We focus on

the imbedded semi-Markov process of the M/G/1 queue at the departure

times. The imbedded process has the same limiting behavior as the un-

derlying M/G/1 queue and provides an alternative experimental design for

inference of the queue in transient and steady state. An interesting MCMC

and approximate Bayesian computation algorithm (ABC) for the imbedded

departure process for a queueing model with uniform U(θ1, θ2) service-time

distribution has been studied recently in (Shestopaloff and Neal, 2014; Blum

and François, 2010). Our predictive approach is motivated by queues with a

large number of data points and high-frequency systems, where times con-

suming MCMC/ABC algorithms might be infeasible and a nonparametric

approach is desirable to avoid parametric assumptions. We define a re-

inforced stochastic model for the analysis of the M/G/1 queue through a

system of predictive distributions. Using the theory of partial exchangeable

processes developed in (Diaconis and Freedman, 1980; Epifani et al., 2002;

Muliere et al., 2003), we prove that the reinforced stochastic process is in fact

the predictive probability model of a Bayesian semi-Markov mixture model.

It is shown that the nonparametric prior for the random semi-Markov ker-

nel is a beta-Stacy Neutral-to-the-Right process (Walker and Muliere, 1997;

Muliere et al., 2003). This result enabled Bayesian nonparametric prediction

for the M/G/1 queue based on the reinforced stochastic process. The pro-

posed approach bypasses time-consuming MCMC/ABC algorithms, which
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makes the method scalable to large datasets. We provide numerical illus-

trations of the proposed method in an extensive simulation study and an

open-source R package which implements the model.

The paper is structured as follows. Section 2 gives a brief summary of

the structure of an M/G/1 queue, which will be required in Section 3, where

we introduce a reinforced probability model for the analysis of the M/G/1

queue. In section 4 we show that the reinforced process is a semi-Markov

mixture model and can therefore be utilized for Bayesian predictive inference

for the M/G/1 queue as described in Section 5. Section 6 gives a numerical

illustration of the proposed approach in a systematic simulation study for

several M/G/1 queues. We then conclude the article in Section 7.

2 The M/G/1 queue

We consider a one-counter queueing system where items arrive according to a

homogeneous Poisson process with arrival rate λ, where items are processed

according to a “first-in-first-out” rule according to some probability G on

[0,∞). The random function X(t), t ≥ 0 denotes the number of items in

the system at time t ≥ 0 and can be sufficiently summarized through the

jump times and jump chain, i.e. the time points at which an item enters

or departures from the queue and the number of items in the system right

after this jump time.

Except for the special case where G = Exp(µ) is the exponential distibu-

tion, the jump chain and holding times are neither Markov nor semi-Markov.

Hence for a general service time distribution G the M/G/1 queue is non-
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trivial to study and one usually defines an augmented or imbedded process

which is simpler to study (Medhi, 2003). We will utilize the imbedded pro-

cess Y = (Y (t), t ≥ 0) which is equal to X at the departure times of the

original queueing system Y (t) = X(Sn+) if Sn ≤ t < Sn+1, where Sn > 0

denotes the departure time of the n-th item. By definition, Y satisfies the

relation

Y (Sn) = min{Y (Sn−1)− 1, 0}+An for n ≥ 1, (1)

where An denotes the number of arriving items during the n-th service

time (Ross, 1992, p. 89). Since the arrival process of an M/G/1 queue

is Markov, {An}n is independent and identicaly distributed with discrete

probability Q = (Qk)k≥0 where Qk =
∫∞
0 (λs)ke−λsG(ds)/k!. Hence the

process Y is semi-Markov with embedded Markov jump chain {Y (Sn)}n≥0,

with transition matrix Π equal to Πk,j = Qj−k−1+δ0(k)I(j ≥ k), and holding

time distribution P (d(Sn+1 − Sn)) equal to G if Yn > 0 and G ? Exp(λ) if

Yn = 0.

3 The row-wise exchangeable predictive model

In this section we introduce a reinforced probability model for the imbedded

semi-Markov process of the M/G/1 queue. Specifically we will define a

probability model through a system of predictive distributions in such a

way that the predicted probability of the next event will be a function of

the number of times such an event occurred during the compete history

5



of the process. This enables sequential reinforced learning on the future

behavior of the M/G/1 process. In section 4, it will be shown that the

probability model corresponds to a Bayesian semi-Markov mixture process

with a nonparametric prior, and hence the system of predictive distributions

can be interpreted as a nonparametric Bayesian prediction model for the

imbedded departure process of the M/G/1 queue.

We start by introducing three sequences of random variables which will

be used for this purpose. The first sequence will be used to model the

discrete increments of the queue at departure times. Let A1 be a discrete

random variable on N0 with probability mass function

P(A1 = k) =
sk
mk

k−1∏
j=0

(
1− sj

mj

)
for k ≥ 0,

where s and m are non-negative sequences such that (i) sj < mj , (ii) 0 <

infj{sj} and (iii) supj{mj} < +∞. Moreover, for n ≥ 1 and given An =

σ({Aj}1≤j≤n), let An+1 be distributed as

P(An+1 = k|An) =
sk + vn(k)

mk + wn(k)

k−1∏
j=0

(
1− sj + vn(j)

mj + wn(j)

)
,

where vn(k) =
∑n

i=1 I(Ai = k) and wn(k) =
∑n

i=1 I(Ai ≥ k) denote the

counting and risk processes for the first n elements of (Aj)j≥1, respecttively.

Secondly, we define two sequences of non-negative real variables, which

will be used to model the departure times of the queue. For this propose

let α(i) with i = 1, 2 be two measures on the positive real line (R+,B(R+)),

and let β(i) : [0,∞) → (0,∞) be a measurable step function. For ease
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of exposure we decompose the measure α(i) into a discrete part α
(i)
d with

discontinuity set J (i) = {tj}j≥1 and an absolutely continuous part α
(i)
c , i.e.

α(i)[0, t] = α
(i)
c (0, t] +

∑
j:tj∈J (i),ti≤t α

(i)
d {ti}. We assume that 0 /∈ J (i) and

(α(i), β(i)) satisfy

∏
tj∈J (i)

(
1−

α
(i)
d {tj}

α
(i)
d {tj}+ β(i)(tj)

)
exp

{
−
∫
[0,∞)

α
(i)
c (ds)

β(i)(s)

}
= 0. (2)

Now, for i = 1, 2 let S
(i)
1 be a non-negative random variable with comple-

mentary distribution function (ccdf)

P
(
S
(i)
1 > t

)
=

∏
j:tj∈J (i),tj≤t

(
1−

α
(i)
d {tj}

β(i)(tj) + α
(i)
d {tj}

)
exp

{
−
∫
(0,t]

α
(i)
c (ds)

β(i)(s)

}
.

Moreover, for n > 1 and given the sigma-field S(i)n = σ
(
{S(i)

j }1≤j≤n
)
, let

S
(i)
n+1 be distributed as

P
(
S
(i)
n+1 > t|S(i)n

)
=

∏
j:tj∈J

(i)
n ,tj≤t

(
1−

α
(i)
n,d{tj}

β
(i)
n (tj) + α

(i)
d,n{tj}

)
exp

{
−
∫
(0,t]

α
(i)
c (ds)

β
(i)
n (s)

}
,

where the discrete measure αn,d{t} = α
(i)
d {t}+

∑
i≤n I(S

(i)
j = t) and the step

function β
(i)
n (t) = β(i)(t)+

∑
i≤n I(S

(i)
j > t) are updated by the counting and

risk processes for the first n random variables. Assumption (2) and 0 /∈ J (i)

imply that the system of predictive distributions is proper without positive

mass at zero or infinity, which will ensure that the queueing system has a.s.

non-zero and finite holding-times.

Finally, similarly to the departure process of the M/G/1 queue, we define
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the jump process Y (t) =
∑

n≥0 YnI(Sn ≤ t ≤ Sn+1) for t ≥ 0 as

(Yn+1, Sn+1) =
(

max(Yn−1, 0) +An+1,

Sn+I(Yn = 0)S
(1)
h(n) +I(Yn > 0)S

(2)
n+1−h(n)

)
for n ≥ 1, (3)

where h(n) =
∑n

j=0 I(Yj = 0) denotes the number of times the system

was idle until time Sn and we set (S0, Y0) = (0, a0) for a0 ∈ N0. The

interpretation of (3) is similar to the imbedded semi-Markov process of a

M/G/1 queue. Differentiating between non-idle and idle holding times is not

necessary but has some advantages for statistical prediction as demonstrated

below.

4 A Bayesian mixture representation

In this section we show that the process defined in (3) can be represented as

a Bayesian mixture model. We will first establish an invariance property for

the jump chain {Yn} and the sequence of states and jump times {(Yn, Sn)},

which will be required for the mixture representation. Since the jump chain

has a restricted set of transitions, we call a sequence (jk)
n
k=0 of non-negative

integers admissible if jk ≥ jk−1 − I(jk−1 > 0) for all k ≤ n. Moreover,

following (Diaconis and Freedman, 1980), we call two integer sequences i =

(ik)
n
0 and j = (jk)

m
0 equivalent if i0 = j0 and for every pair of non-negative

integers s, v the number of transitions from s to v among states in i equals

the same number of transitions in j. The following lemma establishes the

finite dimensional law of the jump chain and an invariance property.
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Lemma 1. Lemma 1 (i) For every n ≥ 1 and every sequence of states

j = (jk)
n
k=0

P(∩nk=0{Yk = jk})
∏
i≥0

s
[vn(i)]
i (mi − si)[un(i)]

m
[wn(i)]
l

if j is admissible and 0 otherwise, where
∏−1
i=0 := 1, a[n] = a(a+ 1) · · · (a+

n− 1) and un(i) = wn(i)− vn(i).

(ii) The jump chain {Yn} is partial exchangeable according to (Diaconis and

Freedman, 1980), i.e. for every two equivalent integer sequences i and j of

length n+ 1 > 0

P(∩nk=0{Yk = ik}) = P(∩nk=0{Yk = jk}).

(iii) For every fixed i ∈ N0, P(lim infn Yn = i|Y0 = i) = 1.

The proof of the lemma and all remaining results are given in the ap-

pendix.

The partial exchangeability property (ii) can be established from the fi-

nite dimensional probability law as stated in (i). Moreover, part (ii) and (iii)

of the preceding lemma facilitates a direct application of Diaconis and Freed-

man representation theorem (Diaconis and Freedman, 1980), which states

that every recurrent partial exchangeable process is a mixture of Markov

chains. It follows that the sequence {Yn} is a Markov mixture model given

some random transition matrix. The exact prior measure for the transition

matrix will be determined below.

We now turn to the joint model of jump chain and holding times (3) and
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establish a joint mixture representation. For this purpose we define for each

state i ∈ N0 the sequence of hitting times to i by τi(1) = inf{m ≥ 0 : Ym = i}

and τi(n + 1) = inf{m > τi(n) : Ym = i} for n > 1. Furthermore, following

(Epifani et al., 2002), we introduce the sequence of successor states of state

i as Vi(n) = Yτi(n)+1 if τi(n) <∞ and ∞ otherwise. Similarly we define the

sequence of holding times to state i as Ti(n) = Sτi(n)+1 − Sτi(n) if τi(n) <∞

and +∞ otherwise. The following lemma extends Lemma1 (ii) and shows

that the joint process {(Yn, Sn)}n is row-wise partial exchangeable.

Lemma 2. Lemma 2 Define the matrix (V, T ) of successor states and hold-

ing times as (V, T ) = {(Vi(n), Ti(n))}i≥0,n≥1. Then (V, T ) is row-wise par-

tial exchangeable according to (Epifani et al., 2002), i.e. for all N ≥ 0 and

n > 1

P

[
N⋂
i=0

n⋂
k=1

{
Vi(k)=ji,k, Ti(k)≤ ti,k

}]
=P

[
N⋂
i=0

n⋂
k=1

{
Vi(k)=ji,σi(k), Ti(k)≤ ti,σi(k)

}]

for any permutation σi of {1, · · · , n}, for 1 ≤ i ≤ N .

Using lemma 1 and 2, we can now use the theory of row-wise partial

exchangeable processes (Epifani et al., 2002; Muliere et al., 2003) and show

that the process defined in (3) is a Bayesian mixture model. Recall that a

continuous time jump process is semi-Markov if the jump chain and holding

time are jointly Markov on S = N0× [0,∞). Also recall that a semi-Markov

kernel W = (Wi, i ∈ N0) is a sequence of probability measures on S which is

an elements of W, where W denotes the space of all sequences of probability

measures on S.
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Corollary 1. Corollary 1(i) There exists a W-valued random element W

such that for every admissible sequence (ik)0≤k≤n of states and positive real

numbers (tk)1≤k≤n, n ≥ 1

P

[
n⋂
k=0

{
Yk = ik, Sk − Sk−1 ≤ tk

}∣∣∣X0 = i0

]
= E

[ ∏
1≤k≤n

Wik−1
(ik, [0, tk])

]
.

(ii) The random semi-Markov kernel W = {Wi(·, ·)}i≥0 has the form

Wi(j, [0, t]) =


Π0,jG

(1)(t) if i = 0, t ≥ 0

Πi,jG
(2)(t) if i ≥ 1, t ≥ 0;

(4)

with random transition matrix Πi,j = Qj−i+1−δ0(i)I(i ≥ 0, j ≥ i) where

Qj = θj
∏
k<j(1 − θk) and θj

ind.∼ Beta(sj ,mk − sj). Moreover, the ran-

dom distribution function G(i), i = 1, 2, is a beta-Stacy Neutral-to-the-Right

process on R+ with parameters (β(i), α(i)) and with Levy measure

v(ds, dt) =
exp{−sβ(i)(t)}
1− exp{−s}

dsα(i)
c (dt). (5)

The corollary states that, given the random semi-Markov kernel W, the

reinforced process Y defined in (3) is semi-Markov and behaves like the

M/G/1 queue at the departure epochs. The nonparametric prior for W

is a product of a random matrix and two Neutral-to-the-Right processes

(Doksum, 1974; Walker and Muliere, 1997) where G(2) is the nonparametric

prior for the service time distribution G.

Remark 1. Remark 1 It is not difficult to see that, given an observed sample
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of N jump times and states {(Yn, Sn)}n≤N , the process {(Yn, Sn)}n≥N is

again a mixture of semi-Markov chains with the same nonparametric prior,

where the prior parameters v, w, α(i), β(i), i = 1, 2 are replaced by sN = s +

vN ,mM = m + wN , α
(i)
N , β

(i)
N , with α

(i)
N,c = α

(i)
c , α

(i)
N,d = α

(i)
d + N (i)(·) and

β
(i)
N = β(i) +R(i)(·); where the counting and risk processes equal to

N (1)(x) =
∑

1≤n≤N
I(Sn − Sn−1 = x, Yn−1 = 0),

R(1)(x) =
∑

1≤n≤N
I(Sn − Sn−1 > x, Yn−1 = 0),

N (2)(x) =
∑

1≤n≤N
I(Sn − Sn−1 = x, Yn−1 > 0),

R(2)(x) =
∑

1≤n≤N
I(Sn − Sn−1 > x, Yn−1 > 0) for x ≥ 0.

In the next section we use the reinforced stochastic process (3) for fast

and scalable nonparametric Bayesian prediction of main quantities of the

M/G/1 queue.

5 Bayesian nonparametric prediction

In this section we use the semi-Markov mixture process (3) for nonparamet-

ric Bayesian prediction for the M/G/1 queue. The R package, NPBMG1,

available in the supplementary material, implements the proposed method.

Assume data for an M/G/1 process are observed until the N -th departure

time and summarized as (Y, S)N := {(Yn, Sn)}0≤n≤N . This data reduction

is always feasible even if the original data are not collected according to

this format. Based on the current knowledge one wants to predict the main
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characteristics of the system in transient and steady state without knowing

the exact service time distribution and the arrival rate. Furthermore, as

new observations arrive we want to update our estimates in real time. We

model the queue through the process (3) and its predictive distribution as

described below. We first consider the system in transient state and turn

thereafter to the steady state equilibrium.

Number of items in the queue at departure epochs

Predicting the number of items at the next departure epoch can be done

directly using the predictive distribution of the increments A. In particular,

the transition probability from i ≥ 0 items to j ≥ i− 1 + δ0(i) items, given

the current information FN = σ((Y, S)N ), is given by

E[Πi,j |FN ] = P(YN+1 = j|YN = i,Fn)

=
sj−i+1−δ0(i) + vN (j − i+ 1− δ0(i))
mj−i+1−δ0(i) + wN (j − i+ 1− δ0(i))

j−i−δ0(i)∏
l=0

(
1− sl + vN (l)

ml + wN (l)

)

if j ≥ i − 1 + δ0(i) ≥ 0 and 0 otherwise. Similarly the tail probability of

more than j ≥ i− 1 + δ0(i) items and the expected number of items at the

next departure time is given by

P(YN+1 > j|YN = i,Fn) =

j−i+1−δ0(i)∏
l=0

(
1− sl + vN (l)

ml + wN (l)

)
,

E[YN+1|FN ] = YN + 1− δ0(YN ) +
∑
j≥0

j∏
l=0

(
1− sl + vN (l)

ml + wN (l)

)
.
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Mean service time

The distribution function of the service-times given the current information

can be estimated from the predictive distribution of the holding times

E[G(t)|FN ] = P
[
S
(2)
N+1−h(N) ≤ t

∣∣FN]
= 1−

∏
j:t≥tj∈J (2)

(
1−

α
(2)
N,d{tj}

β
(2)
N (tj) + α

(2)
N,d{tj}

)
exp

{
−
∫
(0,t]

α
(2)
c (dx)

β
(2)
N (x)

}
.

The evaluation of the integral in the last expression across t is relatively

time consuming. In the actual numerical implementation, described in the

next section, we sample repeatedly from the posterior P(dG(2)|FN ). In this

way we can provide highest-posterior-density (HPD) credibility sets for the

service-time cdf G(2) and the mean service time E[S(2)|G(2)]. We developed

a simple and fast algorithm to sample from the posterior P(dG(2)|FN ). The

detailed steps of the algorithm are described in the supplementary material.

The Traffic intensity and the steady state equilibrium

The traffic intensity, defined as ρ = E[An;Q] if probability mass function

Q of An is known, is the single most important index of the queue and

determines whether the system converges to a steady state equilibrium. The

queue will converge to a steady state limit if and only if ρ < 1 (Medhi, 2003).

The Bayesian point predictor for ρ equals

E[ρ|FN ] = E[AN |FN ] =
∑
j≥0

j∏
l=0

(
1− sl + vN (l)

ml + wN (l)

)
,
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Moreover, we introduce a Bayesian hypothesis test for convergence to a

steady-state equilibrium by specifying a weighted 0-1 loss function with cost

w1 and w0 for choosing falsely the model M1 = {ρ < 1} over the model

M0 = {ρ ≥ 1} and vice versa. The optimal Bayesian decision then selects

model M1 over M0 if P[ρ < 1|FN ] > w1/(w1+w0). To compute the posterior

probability for model M1, we apply the mixture representation in Corollary1

and resort to Monte-Carlo based inference as described in Algorithm 1.

Algorithm 1 Monte-Carlo based steady state inference

1: procedure Inference for the traffic intensity ρ
2: for c=1:C do
3: sample θ

(c)
j ∼ Beta(sj + vN (j),mj + wN (j)− vN (j)) for j ≥ 0

4: set ρc :=
∑

j≥0
∏j
l=1(1− θl) and Ic = I(ρc < 1)

5: end for
6: compute JC =

∑C
c=1 Ic and set P[ρ < 1|FN ] ≈ JC/C

7: set (Lα, Uα) = arg mink=1,...,C−b(1−α)Cc[ρ(k), ρ(k+b(1−α)Cc)]
8: end procedure

Steady state prediction

If, given the current information FN , the Bayesian decision is to choose the

ergodic model M1, we want to predict the queue at the steady state equilib-

rium. For this purpose, we have to restrict the posterior and the predictive

distribution to the model M1. We use the fact that the invariant distribu-

tion ψ = (ψj)j≥0 of the M/G/1 system, i.e. the distribution of the number

of items in the system at steady state, is identical to the invariant distri-

bution of the imbedded jump chain at the departure times {Yn} (Medhi,

2003), where ψ solves ψΠ = ψ. As before Πi,j = Qj−i+1−δ0(j)I(j ≥ i, i > 0),

where Q under the posterior probability equals Qk = θk
∏
l<k(1− θl) and θl
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has a beta distribution as described in Algorithm 1. After some algebraic

manipulations we can express the invariant distribution as

ψ0 = 1− ρ (6)

ψk =
ψ0Sk−1 +

∑k−1
i=1 ψiS(k − i)
Q0

for k ≥ 1, (7)

where S(k) =
∑

j≥k+1Qj =
∏k
j=1(1− θj). We utilize the recursive relation

(6) and (7), and build upon Algorithm 1, to predict the invariant distribution

and the expected number of items in the system at equilibrium. The main

computational steps are summarized in Algorithm 2.

Lastly, for an M/G/1 queue such that ρ < 1, the mean length of the

busy period in equilibrium, is given by µ(Q,G) = E[S
(2)
n |G]/(1− E[An|Q]).

The predicted busy period given the current data FN is obtained by using

the Monte-Carlo computations of Algorithm 2.

6 Numerical Illustration

In this section we give a numerical example of the procedure outlined in the

previous section. In particular we consider four different queueing models

summarized in Table 1.

For each system we simulated 1,000 queueing processes of length 10i,

i = 3, 4, 5 time units. The procedure was implemented in R without us-

ing parallel computing, which would be straight forward as all Monte-Carlo

computing steps are non-iterative. Table 2 summarizes the average predic-

tive performance of the proposed method over the 1,000 queueing processes
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Algorithm 2 Monte-Carlo based steady-state inference (continued)

1: procedure Inference for the invariant distribution ψ
2: for c=1:C such that Ic = 1 do
3: compute S

(c)
k =

∏
j≤k(1− θ

(c)
k ) for k ≥ 0

4: set ψ
(c)
0 = 1− ρc and

5: compute recursively ψ
(c)
k for k > 0 according to (7)

6: end for
7: compute ψ̂k =

∑
c:Ic=1 ψ

(c)
k /JC for k ≥ 0

8: set limt→+∞ E[X(t)|FN ,M1] ≈
∑

k≥ kψ̂k
9: end procedure

1: procedure Inference for the mean length of the busy period
2: for c=1:C such that Ic = 1 do
3: generate Gc(·) = 1−Gc(·) from P[G(2)|FN ]
4: compute the mean service time µc =

∫
dGc

5: end for
6: Compute E[µ(Q,G)|FN ] ≈ J−1C

∑
c:Ic=1 µc/(1− ρc)

7: end procedure

for each of the four queueing models and the 3 observational periods. For

all quantities considered posterior estimates quickly concentrate around the

true values. Except for the mean number of items in equilibrium the 90

percent highest density credibility intervals have frequentist coverage close

to the nominal values. The coverage of the credibility interval for the mean

number of items in equilibrium is higher than the nominal value making

prediction more conservative.

7 Conclusions

Queueing models are a class of stochastic processes used in many applied

problems. In this paper we introduced a fast and scalable approach to the

Bayesian analysis of the M/G/1 queuing systems. The proposed method
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Model Arrival service-time distribution tra�c
rate intensity

1 .3 Exp(.4) .75
2 .3 Uni(1, 4) .75
3 .3 Gam(5, 2) .75
4 .3 .3Gam(.2, 1)+.2Gam(.4, .1)+.4Gam(.4, 3)+.1Gam(5, .25) .75

1

Table 1: True queueing models used in the simulation study

uses a predictive nonparametric approach utilizing the theory of reinforced

stochastic process and row-wise partial exchangeable process developed in

(De Finetti, 1980; Epifani et al., 2002; Muliere et al., 2003). As a conse-

quence inference can be done using either closed form expressions or simple

Monte-Carlo schemes and avoids therefore time consuming MCMC meth-

ods or posterior approximations like ABC methods. Future work will be

directed towards the G/G/1 queue using an augmentation approach where

the queueing system is embedded into an augmentation semi-Markov pro-

cess.
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A Simulation of Beta-Stacy processes

The Beta-Stacy Neutral-to-the-Right random distribution function G ∼

BS(α, β) with base measure α = αd + αc and precision function β is a

stochastic process define as 1 − G(·) d
= exp{−Zc(·) − Zd(·)} where Zc(·) =∑

j Zc,jδTj is an independent increment process with random jump locations

on [0,∞) and Levy measure

ν(ds, dt) = k(s|t)dsαc(dt) =
exp{−sβ(t)}ds
1− exp{−s}

αc(dt), (8)

and Zd =
∑

tj∈I Zd,jδtj is an independent increment process jumps at de-

terministic locations I = {t ≥ 0 : αd{t} > 0} of size Wj = 1 − e−Zd,j ∼

22



Beta(αd{tj}, β(tj)) (Ferguson and Klass, 1972; Walker and Muliere, 1997;

Walker and Damien., 2000; Lee, 2007). Moreover, from (Doksum, 1974;

Walker and Muliere, 1997), if X = {Xi}1≤i≤n is a random sample from G,

then the posterior distribution of G, given X is again a Beta-Stacy process

with parameter (αn, βn) where αn = αc + [αd + N ] and βn = β + Y , for

N([0, t]) =
∑

i≤n I(Xi ≤ t) and Y (t) =
∑

i≤n I(Xi > t) for t ≥ 0.

To simulate from BS(αn, βn) we use the fact that if we define H =∑
j(1 − e−Zc,j )δTj then H is an independent increment process with Levy

measure

vH(ds, dt) =
k(− log(1− s)|t)

1− s
αc(dt) = β(t)s−1(1− s)β(t)−1αc(dt)

β(t)
, (9)

which is the Levy measure of a Beta process (Hjort, 1990) with preci-

sion parameter β and base measure αc/β, say H ∼ BP(β, αc/β). We

can, for example use the ε-truncations method of (Lee, 2007) to simu-

late a Beta process H =
∑

j HjδTj first and then used the transformation

Zc =
∑

j − log(1−Hj)δTj to obtain a realization from a Beta-Stacy process.

The detailed steps are summarized in algorithm 3.

Algorithm 3 ε-truncations method for a Beta-Stacy process

1: generate M ∼ Poisson
(
αc(0, T ]/ε

)
2: generate Tj

iid∼ I(Ti ∈ (0, T ])αc(·)/αc(0, T ] for j = 1, · · · ,M

3: generate Hj |T(j) ∼ Beta(ε, β(T(j))) for j = 1, · · · ,M

4: generate Wj ∼ Beta(αd{tj}, β(tj)) for tj ∈ J

5: set Fε(t) = 1−
∏
j:tj<t

(1−Wj)×
∏
k:Tk≤t(1−Hk) for t ∈ [0, T ]
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B Proofs

Proof. Proof of lemma 1 (i) Let (jk)
n
k=0 be an admissible integer sequence

and define sn(j) = sj + vn(j) and mn(j) = mj +wn(j). From the definition

of the conditional distribution of Ai+1 given Ai and the fact that Ai+1 =

Yi+1 −max(Yi − 1, 0) we can express the joined distribution as

P (∩nk=0{Yk = jk})

=
n∏
k=1

P (Ak = jk − jk−1 + 1− δ0(jk−1)|Ak−1)

=
n∏
k=1

sk−1(jk − (jk−1 − 1)+)

mk−1(jk − (jk−1 − 1)+)

jk−(jk−1−1)+−1∏
i=0

(
1− sk−1(i)

mk−1(i)

)

=

∏n
k=1 sk−1(jk − (jk−1 − 1)+)

∏n
k=1

∏jk−(jk−1−1)+−1
i=0 [mi(k − 1)− sk−1(i)]∏n

k=1

∏jk−(jk−1−1)+−1
i=0 mk−1(i)

=
∏
j≥0

s
[vn(j)]
j (mj − sj)[un(j)]

m
[wn(j)]
j

(ii) Let i and j be to equivalent integer sequences and consider first the

case where one sequence, say i, is inadmissible. Hence, there exists an index

1 ≤ k ≤ n and two integer r, l such that r = ik < ik−1 − 1 = l and therefore

the number of transitions from l to r is positive in i. By equivalence the

number of transitions from l to r in j is positive two and hence both i

and j are null events. Now, consider the case where both sequences are

admissible. Since un(·), wn(·) are functions of vn(·), from part (i) the finite

dimensional law of Y depends only on vn(·). Therefore, it suffices to show

that the counting process vn(·) for (X0, · · · , Xn) = i and (X0, · · · , Xn) = j

is identical. But since i and j are equivalent and admissible, for any integer
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r, l

n∑
k=0

I(ik = r) = I(i0 = r) +
∑

l≤r+1−δ0(r)

n∑
k=1

I(ik−1 = l, ik = r)

= I(j0 = r) +
∑

l≤r+1−δ0(r)

n∑
k=1

I(jk−1 = l, jk = r) =
n∑
k=0

I(jk = r)

(iii) To prove the last part of the lemma we need the following lemma.

Lemma 3. Lemma A.1 For m ∈ N0 fixed define Sn(m) =
∏m
i=0

(
1 −

si + vn(i)

mi + wn(i)

)
for n ≥ 0.

(i) Then, Sn(m)
a.s.−→ S(m) as n→ +∞.

(ii) Moreover, the limit S(m) > 0 with probability one.

Proof. Proof of lemma A.1 We show that {Sn(m)} is a martingale with

respect to the filtration (Fn). Since Sn(m) ∈ [0, 1], (i) follows from the

Martingale-convergence theorem. From (Walker and Muliere, 1997; Muliere

et al., 2000) A = (Ak)k≥1 is exchangeable and therefore an iid sequence

given the tail sigma field of A, say A. Fix n ≥ 1, then

E[Sn+1(m)|Fn] = E[P[An+2 > m)|Fn+1]|Fn]

= E[E[I(An+2 > m)|Fn+1]|Fn]

= E[E[E[I(An+2 > m)|A]|Fn+1]|Fn]

= E[E[I(An+2 > m)|A]|Fn] (by the tower property)

= E[E[I(An+1 > m)|A]|Fn] (by conditional iid)

= E[I(An+1 > m)|Fn] = Sn(m).
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(ii) Moreover, Proposition 5.2 of (Fortin et al., 2000) implies that
(
S
(m)
n

)
m

convergence in distribution to a random complementary distribution func-

tion S = (S(m),m ∈ N0) where form (Walker and Muliere, 1997; Muliere

et al., 2000) the limit equals S(m) =
∏m
k=1(1 − θk) with independent θk ∼

Beta(sk,mk − sk). Therefore

P(S(m) > 0) = P

[
m∏
k=1

(1− θk) > 0

]
=

m∏
k=0

P(θk < 1) = 1.

The last equality holds since by assumption mk − sk > 0 for k = 0, · · · ,m.

Since limits are unique a.s. it follows that S(m) > 0 a.s..

Proof. Proof of lemma 1(iii) From the predictive probability law of {An}

and since Yn+1 = An+1 + max(Yn − 1, 0), for a fix x0 ∈ N0

P (Yn+1 = x0|Fn, Y0 = x0)

=
sx0−Xn+1−δ0(Xn) + vn(x0 −Xn + 1− δ0(Xn))

mx0−Xn+I(Xn≥1) + wn(x0 −Xn + 1− δ0(Xn))

x0−Xn−δ0(Xn)∏
j=0

(
1− sj + vn(j)

mj + wn(j)

)

=
sx0−Xn+1−δ0(Xn) + vn(x0 −Xn + 1− δ0(Xn))

mx0−Xn+I(Xn≥1) + wn(x0 −Xn + 1− δ0(Xn))
Sn(x0 −Xn − δ0(Xn))

≥ infi si
supimi + n

Sn(x0) a.s. (10)

where the last inequality follows since Sm(·) is non-increasing and Xn ≥ 0

a.s. Hence we have that

∞∑
n=1

P (Yn = x0|Fn) ≥
∞∑
n=1

infi si
supimi + n

Sn(x0) a.s. (11)

If the sum on the right hand side of (11) divergence with probability one,
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then from Levy’s extension of the Borel-Cantelli Lemma (Williams, 1991)

it follows that P(lim supn Yn = x0|Y0 = x0) = 1. Since the first term in the

sum on the right hand side of (11) is of order O(1/n) it suffices to show

that Sn(xn)
a.s.→ S(x0) and S(x0) > 0 a.s.. But both facts follow from the

previous lemma.

Proof. Proof of lemma 2 By Lemma 1, Y is recurrent and partial exchange-

able, which by Theorem 2 in (Fortini et al., 2002) is equivalent to V =

{Vj(k)}k≥1,j≥0 being row-wise exchangeability, i.e. {Vi(n); i ≥ 0, n ≥ 1} d
=

{Vi(σ)i(n)); i ≥ 0, n ≥ 1} for any finite permutation σk of N for k ≥ 0.

Moreover, from (Walker and Muliere, 1997; Muliere et al., 2003)
{
S
(i)
n

}
n≥1

are exchangeable as well for i = 1, 2. The successor states and howling times

V = {Vj(k)}k≥1,j≥0 and T = {Ti(k)}k≥1,j≥0 are tied together only through

the hitting times (τi(n);n ≥ 1, i ∈ N0). Let {ji,k}i≤N,k≤n be a sequence of

successor states. Without lost of generality assume j0,k ≥ 0 and ji,k ≥ i− 1

for all 1 ≤ k ≤ N and 1 ≤ i ≤ n, since otherwise the lemma follows trivially

since the sequence {ji,k}i≤N,k≤n and any row-wise permutations of it is a
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null event. Then, a.s.

P

[
N⋂
i=0

n⋂
k=1

{Ti(k) ≤ ti,k}

∣∣∣∣∣
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k, τi(n)}

]

= P

[
n⋂
k=1

{S(1)
k ≤ t0,k}

⋂ ⋂
1≤i≤N

n⋂
k=1

{S(2)
τi(k)+1−h(τi(n)) ≤ ti,k}

∣∣∣∣∣
N⋂
i=0

n⋂
k=1

{τi(n)}

]

= P
[ n⋂
k=1

{S(1)
k ≤ t0,σ0(k)}

⋂ ⋂
1≤i≤N

n⋂
k=1

{S(2)
(i−1)n+k ≤ ti,σi(k)}

∣∣∣ N⋂
i=0

n⋂
k=1

{τi(n)}
]

= P
[ N⋂
i=0

n⋂
k=1

{Ti(k) ≤ ti,σi(k)}
∣∣∣ N⋂
i=0

n⋂
k=1

{Vi(k) = ji,σi(k), τi(n)}
]
. (12)

where the second equality follow be exchangeability of {S(i)
k }, i = 1, 2. Now,

Lemma 2 follows from

P

[
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k, Ti(k) ≤ ti,k}

]

=P

[
N⋂
i=0

n⋂
k=1

{Ti(k) ≤ ti,k}

∣∣∣∣∣
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k}

]
P

[
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k}

]

=E

[
P
[ N⋂
i=0

n⋂
k=1

{Ti(k) ≤ ti,k}
∣∣∣∣ N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k, τi(n)}
]∣∣∣∣∣

N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k}

]

× P

[
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,k}

]

=E

[
P
[ N⋂
i=0

n⋂
k=1

{Ti(k) ≤ ti,σi(k)}
∣∣∣∣ N⋂
i=0

n⋂
k=1

{Vi(k) = ji,σi(k), τi(n)}
]∣∣∣∣∣

N⋂
i=0

n⋂
k=1

{Vi(k) = ji,σi(k)}

]

× P

[
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,σi(k)}

]

=P

[
N⋂
i=0

n⋂
k=1

{Vi(k) = ji,σi(k), Ti(k) ≤ ti,σi(k)}

]
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where the third equality follows from (12) and the fact that V is row-wise

exchangeable.

Proof. Proof of Corollary 1 (i) Since (V, T ) is row-wise partial exchangeable

de Finetti’s theorem for row-wise partial exchangeable arrays (Link, 1980;

De Finetti, 1980; Epifani et al., 2002) gives the existence of a W-valued

random element W = (Wi)i∈N0 such that (Vi(n), Ti(n))n
iid∼ Wi(·, ·) for any

i ∈ N0. Since {Vi(n), Ti(n)|τi(n) = k} = {Yk+1, Sk+1−Sk|Yk = i, τi(n) = k}

this gives (i).

(ii) Moreover, from (Epifani et al., 2002), for i ∈ N0 and t ≥ 0 the empir-

ical transition kernel W
(n)
i (j, [0, t]) = n−1

∑n
k=1 I(Vi(k) = j, Ti(k) ≤ t) con-

verges weakly to Wi(j, [0, t])
d
= Πi,jFi,j(t); and both Π

(n)
i,j =

∑n
k=1 I(Vi(k) =

j) and F
(n)
i,j (t) =

∑n
k=1 I(Ti(k) ≤ t) converge weakly to Πi,j and Fi,j(t).

Form (Fortin et al., 2000; Walker and Muliere, 1997; Muliere et al.,

2000), limn n
−1∑

1≤k≤n I(Ak = j)
d
= limn P (An+1 = j|Fn)

d
= Qj a.s., where

Q = (Qj , j ≥ 0) is a random probability with distribution as stated in

Corollary 1 (ii). The distributional form of Π follows now from P[Vi(n) =

j] = P[Aτi(n)+1 = j − i + I(i > 0)] = P[An = j − i + I(i > 0)], where the

second equality follows from a stopping-time result for exchangeable random

variables in (Kallenberg, 1982) and (Aldous, 1985) Theorem 6.1 page p.42.

Similarly, since S(2) is exchangeable and independent of {Yn}, by the

same stopping-time property for exchangeable random variables, for i >

0, j ≥ i+1−δ0(i), t ≥ 0 and τi,j(n+1) = inf{m > τi,j(n) : Ym = i, Ym+1 = j}

Fi,j
d
= lim

n
n−1

n∑
k=1

I(S
(2)
τi,j(k)+1−h(τi,j(k)) ≤ t)

d
= lim

n
n−1

n∑
k=1

I(S
(2)
k+1−h(k) ≤ t) =: G(2)(t).
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Which shows that the limit, if it exists, does not dependent on i > 0,

j ≥ 0 and Π. Moreover, the exchangeable sequence
{
S
(2)
n

}
n

has the same

system of predictive distributions as an exchangeable sequence of random

variables with beta-Stacy mixing measure and parameters (α(2), β(2)), G ∼

BS(α(2), β(2)) (Walker and Muliere, 1997; Muliere et al., 2000, 2003). Since

the predictive distribution uniquely determined the system of finite dimen-

sional probability law of
{
S
(2)
n

}
n

this implies G(2) ∼ BS(α(2), β(2)). The

case F0,i
d
= G(1) ∼ BS(α(1), β(1)) can be shown similarly.
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Model Queue Point estimator 90%-CI
length Bias MSE Width Coverage

Tra�c Intensity ⇢
1 1e+03 -9.2e-03 4.2e-03 2.1e-01 8.9e-01
1 1e+04 -6.2e-04 4.1e-04 6.8e-02 9.0e-01
1 1e+05 -9.0e-05 4.2e-05 2.1e-02 9.2e-01
2 1e+03 -1.7e-03 2.5e-03 1.7e-01 9.0e-01
2 1e+04 -2.5e-04 2.7e-04 5.4e-02 9.0e-01
2 1e+05 -3.2e-05 2.6e-05 1.7e-02 9.1e-01
3 1e+03 -3.2e-03 2.8e-03 1.7e-01 9.0e-01
3 1e+04 -1.0e-03 2.9e-04 5.5e-02 9.0e-01
3 1e+05 -3.6e-04 2.9e-05 1.7e-02 9.1e-01
4 1e+03 -1.6e-02 6.4e-03 2.5e-01 8.7e-01
4 1e+04 -8.6e-04 6.6e-04 8.3e-02 8.8e-01
4 1e+05 2.9e-05 6.9e-05 2.6e-02 8.8e-01

Service time mean
1 1e+03 5.9e-02 3.3e-02 5.9e-01 9.0e-01
1 1e+04 8.9e-03 2.8e-03 1.7e-01 8.9e-01
1 1e+05 1.8e-03 2.7e-04 5.4e-02 9.0e-01
2 1e+03 2.8e-03 3.4e-03 1.9e-01 8.8e-01
2 1e+04 1.6e-04 3.4e-04 5.9e-02 8.9e-01
2 1e+05 -1.5e-04 3.4e-05 1.9e-02 9.0e-01
3 1e+03 1.8e-02 6.1e-03 2.5e-01 9.0e-01
3 1e+04 1.8e-03 5.7e-04 7.7e-02 8.9e-01
3 1e+05 1.7e-04 6.2e-05 2.4e-02 8.8e-01
4 1e+03 1.3e-01 1.1e-01 9.5e-01 8.8e-01
4 1e+04 2.6e-02 7.3e-03 2.7e-01 8.8e-01
4 1e+05 3.9e-03 6.1e-04 8.1e-02 8.9e-01

Mean Number of items in equilibrium
1 1e+03 -1.7e-02 1.3e+0 5.8e+0 9.2e-01
1 1e+04 8.2e-03 1.2e-01 1.4e+0 9.5e-01
1 1e+05 3.1e-04 1.2e-02 4.3e-01 9.5e-01
2 1e+03 5.3e-02 3.3e-01 2.6e+0 9.5e-01
2 1e+04 2.8e-03 2.7e-02 6.3e-01 9.3e-01
2 1e+05 1.9e-04 2.5e-03 2.0e-01 9.5e-01
3 1e+03 4.8e-02 3.9e-01 2.8e+0 9.3e-01
3 1e+04 -4.8e-03 3.2e-02 6.9e-01 9.4e-01
3 1e+05 -3.8e-03 3.2e-03 2.2e-01 9.4e-01
4 1e+03 -4.9e-01 3.1e+0 9.7e+0 8.6e-01
4 1e+04 -3.5e-02 5.3e-01 2.9e+0 9.4e-01
4 1e+05 -1.0e-03 5.6e-02 9.0e-01 9.4e-01

1

Table 2: Predictive performance for all queuing models and different length
of observation
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