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Abstract

Existing Bayesian nonparametric methodologies for bandit problems focus on exact obser-
vations, leaving a gap in those bandit applications where censored observations are crucial. We
address this gap by extending a Bayesian nonparametric two-armed bandit problem to right-
censored data, where each arm is generated from a beta-Stacy process as defined by Walker
and Muliere (1997). We prove the existence of optimal stay-with-a-winner and switch-on-a-loser
strategies, by imposing non-restrictive conditions on the parameters of the beta-Stacy processes,
including the special cases of the homogeneous process and the Dirichlet process. Numerical
estimations and simulations for a variety of discrete and continuous state space settings are
presented to illustrate the performance and flexibility of our method.

1 Introduction

In a discrete-time two-armed bandit problem, there are two stochastic processes (the two arms) and
a sequential decision process (a strategy) that selects, at each time, which one of the two processes
to observe. This selection is made on the basis of the previous observations, and it balances two
conflicting benefits: the immediate payoff coming from the exploitation of an arm (so far) known
to be better and the information concerning future payoffs coming from the exploration of a less
known arm. A strategy is said to be optimal if it yields the maximal expected payoff, and an arm
is said to be optimal if it is selected at the beginning of an optimal strategy.

A strategy can be seen as a function that assigns, to each partial history of observations, the
integer 1 or 2 indicating the arm to be observed at the next stage (Berry and Fristedt 1985). With
the exception of the simplest cases, explicit specifications of optimal strategies are hindered by
computational issues. As a consequence, following Chattopadhyay (1994), optimal strategies can
only be partially characterized in terms of break-even observations. We will consider two kinds of
optimal strategies: stay-with-a-winner and switch-on-a-loser strategies. Assuming, without loss of
generality, that a higher realized value of a random variable gives a higher payoff in the bandit
problem, the break-even observation in a stay-with-a-winner strategy is that value at which the
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expected advantage of choosing arm 1 over arm 2 is null. Then the expected advantage is positive
(negative) for values observed from arm 1 greater (lower) than the break-even, and at these values
arm 1 (arm 2) is chosen at the next stage a optimal. On the other hand, the break-even observation
in a switch-on-a-loser strategy is that realized value at which the expected advantage remains
unaltered at the next stage. For values observed from arm 1 higher (lower) than the break-even,
the expected advantage increases (decreases) relative to its initial value, and arm 1 (arm 2) is
optimally chosen at the next stage.

More formally, let Xj and Yj be random variables generated from, respectively, arm 1 and 2
at stage j. For any positive integer k, X1, X2, . . . , Xk given F1 are i.i.d with probability measure
F1, and Y1, Y2, . . . , Yk given F2 are i.i.d with probability measure F2. The (possibly infinite) bandit
horizon is n and An = (a1, a2, . . . , an) is a nonincreasing sequence of discount factors.

Early examples of bandit problems are treated in Robbins (1952), Bellman (1956) and Bradt
et al. (1956). Among later works, Chernoff (1968) focuses on two Gaussian arms Fi = N(µi, σ

2), i =
1, 2, with unknown drifts and known constant variance; Berry (1972) gives sufficient conditions
for optimal selection in a Bernoulli two-armed bandit, Fi = Bern(pi), i = 1, 2, proving a stay-
with-a-winner strategy; Berry and Fristedt (1979) characterize optimal strategies for Bernoulli
one-armed bandits (F1 = Bern(p) and F2 known) with regular discount sequences; Gittins (1979)
introduces dynamic allocation indices for optimal strategies in multi-armed bandits. Clayton and
Berry (1985) is the first paper that extends the bandit problem to a Bayesian nonparametric
framework, considering a random F1 ∼ DP (α) and known F2: the probability measure associated
to the random variables in one of the two arms is random and extracted from the Dirichlet process
introduced in Ferguson (1973). Dirichlet bandits are generalized to two-armed problems Fi ∼
DP (αi), i = 1, 2, in Chattopadhyay (1994), where the existence of stay-with-a-winner and switch-
on-a-loser optimal strategies is proven. Some other properties of Dirichlet bandits are studied in
Yu (2011).

In the this paper we extend Bayesian nonparametric bandits to problems where each arm
generates an infinite sequence of exchangeable random variables (de Finetti 1937) having, as de
Finetti measure, the beta-Stacy process of Walker and Muliere (1997). In our framework the
two arms are random, with Fi ∼ BS(αi, βi), i = 1, 2, where αi and βi, discussed in Section 2,
characterize the two beta-Stacy processes. The Dirichlet bandit of Clayton and Berry (1985) and
Chattopadhyay (1994) is an important special case of our setting, as is the bandit arms with the
homogeneous process of Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979). Our
main result is that, under constraints on the parameters of the beta-Stacy processes (constraints
that include the cases of the homogeneous process and the Dirichlet process), optimal stay-with-
a-winner and switch-on-a-loser strategies exist and can be used for dealing with right censored
or exact observations. As specified in Phadia (2013), the beta-Stacy process belongs to the class
of neutral to the right (NTR) processes introduced by Doksum (1974), and it generalizes the
Dirichlet process in two respects: more flexible prior information may be represented and, unlike
the Dirichlet process, it is conjugate to right censored data. Also, when the prior process is assumed
to be Dirichlet, the posterior distribution given right censored observations is a beta-Stacy process.
Beta-Stacy bandit problems are motivated by the importance of dealing with censored observations
in typical bandit applications: the two arms can be two treatments available for a certain disease
(Berry and Fristedt 1985); patients arrive one at a time and a treatment is assigned. The patient
returns information on the effectiveness of the treatment, but this response can be censored, e.g.
if the patient interrupts the treatment. Another classical example of a setting where censored
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observations may arise is managing a team of industrial scientists working on several research
projects, and deciding which sequence of project executions would maximize the expected total
value (Nash 1973): the observed project value is censored if the project is interrupted due, for
instance, to reduced financial support. A final example of a bandit problem with censored data
is that of an industrial processor choosing which jobs to process to minimize the processing time
(Gittins et al. 2011 and references therein): jobs may return censored observations if the task
is unfinished for system breakdowns. The arms introduced in the present paper have random
distribution functions generated by beta-Stacy processes, permitting the analysis of bandit problems
with censored observations, while retaining mathematical tractability.

In Section 2 we introduce the beta-Stacy process and the bandit problem. Then, we show the
existence of stay-with-a-winner and switch-on-a-loser strategies, for α1(·) and α2(·) having discrete
(Section 3) and continuous support (Section 4). We apply our methods to simulated studies in
Section 5, and conclude with examples of potential further applications and research directions in
Section 6.

2 Preliminaries

2.1 Beta-Stacy process

Let F be the space of cumulative distribution functions (cdf’s) on [0,∞). A probability distribution
is placed on F through the definition of a stochastic process F on ([0,∞),A), where A is the Borel
σ-field of subsets, such that, with probability 1, the sample paths of F are cdf’s. Let the right
continuous measure α(·), with α(0) = 0, and the positive function β(·) both be defined on [0,∞),
and let {tk} be the countable set of discontinuity points of α(·), such that α{tk} = α(tk)−α(tk−) =
Sk > 0 for all k, and Sk is the jump in tk. Let αc(t) = α(t) −

∑
tk≤t α{tk}, so that αc(·) is a

continuous measure. Note that in the rest of the paper, whenever clear, the explicit dependence on
α(·) and on β(·) of all quantities of interest has been omitted for notational clarity.

Definition 2.1. F is a beta-Stacy process on ([0,∞),A) with parameters α(·) and β(·), that is
F ∼ BS(α, β), if for all t ≥ 0, F (t) = 1 − exp{−Z(t)}, where Z is a Lévy process with Lévy
measure for Z(t) given, for v > 0, by

dNt(v) =
dv

1− exp(−v)

∫ t

0
exp(−v(β(s) + α{s})dαc(s))

and with moment generating function given by

logE [−φZ(t)] =
∑
tk≤t

logE [exp(−φSk)] +

∫ t

0
(exp(−φv)− 1)dNt(v),

where 1− exp(Sk) ∼ Beta(α{tk}, β(tk)).

We now state the two theorems from Walker and Muliere (1997) we will use in the sequel, on
the conjugacy of the beta-Stacy process, distinguishing between discrete and continuous beta-Stacy
parameters.

Theorem 2.2. (Walker and Muliere 1997) The posterior distribution of a beta-Stacy process with
discrete parameters {αj , βj}, j ∈ N, is also a beta-Stacy process, with parameters αj + nj and
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βj + mj, where nj is the number of exact observations at j and mj is the sum of the number of
exact observations in {l : l > j} and censored observations in {l : l ≥ j}.

The theorem above clarifies an important property of the beta-Stacy process: its conjugacy under
sampling, possibly with right censoring. Furthermore, to have a.s. a cdf, the discrete parameters
α and β in Walker and Muliere (1997) are required to satisfy the condition∏

j

(
1− αj

βj + αj

)
= 0, j ∈ N. (1)

In Theorem 4 of Walker and Muliere (1997) the conjugacy under sampling with possible right
censorship is formalized in the continuous case:

Theorem 2.3. (Walker and Muliere 1997) The posterior distribution of a beta-Stacy process with
continuous parameters {α(·), β(·)} is also a beta-Stacy process, with parameters α(t) + N{t} and
β(t) +M(t), where N{s} is the counting process for uncensored observations in s, and M(s) is the
sum of the number of exact observations in {t : t > s} and of censored observations in {t : t ≥ s}.

A posteriori the beta-Stacy process with continuous α(·) and β(·) can be represented as F (t) =
1−e−(Zc(t)+Zf (t)) (Ferguson 1974; Walker and Damien 1998), where the component Zf incorporates
the fixed points of discontinuity in the locations of the exact observations, and Zc is the residual
part of the Lévy process. In particular, the corresponding jump Si at location ti, where the exact
observation occurred, is such that

1− exp(−Si) ∼ Beta(N{ti}, β(ti) +M(ti)).

Furthermore, from Walker and Muliere (1997), continuous α(·) and β(·) satisfy the condition∫ ∞
0

dα(s)/β(s) =∞.

In the rest of the paper, we only consider beta-Stacy processes, but it is reasonable to assume
that the results can be generalized to the class of NTR processes. The NTR process of Doksum
(1974) may be viewed in terms of a process with independent non-negative increments, via the
parameterization F (t) = 1 − e−Z(t), t ∈ R+, where Z is a process with independent nonnegative
increments. The beta-Stacy process is a NTR process where Z is a log-beta process, that keeps the
conjugacy property under sampling exact or right censored observations. When β(t) = α([t,∞))
for all t ≥ 0, we obtain the Dirichlet process of Ferguson (1973). Another important special case is
the homogenous process of Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979), arising
when β(t) = β constant for all t.

2.2 Bandit problem

In the proposed framework ({α1, β1}, {α2, β2};An) denote the two-armed bandit problem where
arm i has a beta-Stacy prior with parameters (αi, βi), for i = 1, 2, and An = (a1, a2, . . . , an) is
a nonincreasing discount sequence. Therefore F1 ∼ BS(α1, β1) and the observation at stage 1
from arm 1 is a realization of the random variable X1|F1 ∼ F1. At the generic k-th stage, if the
sample x has been collected in the past stages from the observation of arm 1, the new observation
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will be the realized value of Xk|F1, x ∼ F1|x, where F1|x is still a random distribution from a
beta-Stacy process with updated parameters, thanks to the conjugacy theorems provided in the
previous subsection. Note that the sample x can be partitioned in censored and exact observations:
x = [xexact, xcens]. Equivalent definitions hold for Y1, Y2, . . . , Yk and the observed sample y from
arm 2.

By censored observation we mean that the observed value at stage k from arm 1 is the realized
value of Xk = min{X∗k , Ck}, the minimum between a true exact value at stage k and a censoring
time Ck, and equivalently for Yk from arm 2.

A special choice of βi, detailed below, and absence of censored observations reduce our setting
to the Dirichlet bandit problem ({α1}, {α2};An) of Chattopadhyay (1994).

Similarly to Berry and Fristedt (1985), we let W ({α1, β1}, {α2, β2};An) be the expected payoff
under an optimal strategy; W i({α1, β1}, {α2, β2};An) the expected payoff of a strategy starting
from arm i and proceeding optimally; ∆({α1, β1}, {α2, β2};An) the expected advantage of initially
choosing arm 1 over arm 2 assuming optimal continuation in both stay-with-a-winner and switch-
on-a-loser strategies; finally

∆+({α1, β1}, {α2, β2};An) = max(0,∆({α1, β1}, {α2, β2};An))

and
∆−({α1, β1}, {α2, β2};An) = min(0,∆({α1, β1}, {α2, β2};An)).

More generally, we define the discount sequence Akn = (ak+1, ak+2, . . . , an), and we now intro-
duce the two strategies that we study: stay-with-a-winner and switch-on-a-loser strategies.

Definition 2.4. For Xk|F1 ∼ F1, Yk|F2 ∼ F2, F1 ∼ BS(α1, β1) and F2 ∼ BS(α2, β2), at the
generic stage k ≥ 1, the stay-with-the winner strategy selects arm 1 at stage k + 1 if one of the
following two conditions holds:

• at stage k, Xk = x exact or censored from arm 1 is observed and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ ∆

(
{α1, β1}, {α2, β2};An

)
,

• at stage k, Yk = y exact or censored from arm 2 is observed and

∆
(
{α1, β1}, {α2,y, β2,y};A1

n

)
≥ ∆

(
{α1, β1}, {α2, β2};An

)
,

and selects arm 2 otherwise.
The switch-on-a-loser strategy selects arm 1 at stage k + 1 if one of the following two conditions
holds:

• at stage k, Xk = x exact or censored from arm 1 is observed and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ 0,

• at stage k, Yk = y exact or censored from arm 2 is observed and

∆
(
{α1, β1}, {α2,y, β2,y};A1

n

)
≥ 0,

and selects arm 2 otherwise.

Both strategies at stage k = 1 select arm 1 if ∆
(
{α1, β1}, {α2, β2};An

)
> 0 and arm 2 otherwise.

The break-even point of a strategy is that realized value of X from the first arm (or Y from
the second arm) at which the strategy is indifferent in the choice of the two arms, and a strategy
is said to exist if its break-even point exists.
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3 Break-Even Observations: Discrete Case

The optimal strategy is given in terms of a break-even observation: the first (second) arm is observed
until it yields a value higher (lower) than the break-even one. In this section we prove that a break-
even observation for a stay-with-a-winner and a switch-on-a-loser optimal strategies exist for the
discrete beta-Stacy two-armed bandit problem, under certain conditions on the parameters of the
processes governing the arms.

Let Fi the random distribution function corresponding to arm i, with Xk and Yk having supports
in N for all k ≥ 1. Let αi = (αi1, α

i
2, . . . ) and βi = (βi1, β

i
2, . . . ) for i = 1, 2.

From the construction of the discrete time beta-Stacy process, Walker and Muliere (1997) show
that P(X1 = j|{α1, β1}), j ∈ N, is

P(X1 = j|{α1, β1}) =
α1
j

α1
j + β1j

j−1∏
i=1

(
1− α1

i

α1
i + β1i

)
and similarly for Y1. Then the prior means of the two arms are respectively

EX [X|{α1, β1}] =
+∞∑
j=1

P(X ≥ j|{α1, β1})

=

+∞∑
j=1

∏
i<j

(
1− α1

i

α1
i + β1i

)
=: µ1

and

EY [Y |{α2, β2}] =

+∞∑
j=1

∏
i<j

(
1− α2

i

α2
i + β2i

)
=: µ2.

Given observations

x = (x1, . . . , xk) from arm 1,

y = (y1, . . . , yk) from arm 2,

the conditional expectation of any function h(X) can be computed using Theorem 2.2, and it is
denoted with EX [h(X)|x], where we remind that we omit in all quantities of interest the dependence
from {α1, β1} and {α2, β2}. Then P(X = j|x) is therefore, for j ∈ N,

P (X = j|x) =
α
1,x
j

α
1,x
j + β

1,x
j

j−1∏
i=1

(
1−

α
1,x
i

α
1,x
i + β

1,x
i

)
where

α
1,x
j := α1

j + nj ,

β
1,x
j := β1j +mj ,

with

nj : number of exact observations equal to j,

mj : number of exact observations in {l : l > j} and

censored observations in {l : l ≥ j},
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and with dependence of nj and mj from x neglected for ease of notation. The posterior mean is
therefore

EX [X|x] =
+∞∑
j=1

P(X ≥ j|x) =
+∞∑
j=1

∏
i<j

(
1−

α
1,x
i

α
1,x
i + β

1,x
i

)
=: µ1,x

Following the notation introduced above,

W ({α1, β1}, {α2, β2};An)

= max
{
W 1({α1, β1}, {α2, β2};An),W 2({α1, β1}, {α2, β2};An)

}
,

∆({α1, β1}, {α2, β2};An)

= W 1({α1, β1}, {α2, β2};An)−W 2({α1, β1}, {α2, β2};An),

W 1({α1, β1}, {α2, β2};An)

= W ({α1, β1}, {α2, β2};An) + ∆−({α1, β1}, {α2, β2};An),

W 2({α1, β1}, {α2, β2};An)

= W ({α1, β1}, {α2, β2};An)−∆+({α1, β1}, {α2, β2};An).

Therefore,

W 1({α1, β1}, {α2, β2};An)

= a1µ1 + EX
[
W ({α1,X , β1,X}, {α2, β2};A1

n)
]

= a1µ1 + EX
[
W 2({α1,X , β1,X}, {α2, β2};A1

n)
]

+EX
[
∆+({α1,X , β1,X}, {α2, β2};A1

n)
]
,

W 2({α1, β1}, {α2, β2};An)

= a1µ2 + EY
[
W ({α1, β1}, {α2,Y , β2,Y };A1

n)
]

= a1µ2 + EY
[
W 1({α1, β1}, {α2,Y , β2,Y };A1

n)
]

−EY
[
∆−({α1, β1}, {α2,Y , β2,Y };A1

n)
]
,

and

∆({α1, β1}, {α2, β2};An)

= W 1({α1, β1}, {α2, β2};An)−W 2({α1, β1}, {α2, β2};An)

= a1µ1 + EX
[
W 2({α1, β1}, {α2, β2};A1

n)
]

−a1µ2 − EY
[
W 1({α1, β1}, {α2,Y , β2,Y };A1

n)
]

+EX
[
∆+({α1,X , β1,X}, {α2, β2};A1

n)
]

+EY
[
∆−({α1, β1}, {α2,Y , β2,Y };A1

n)
]
.

Using arguments similar to those in Berry and Fristedt (1985) and Chattopadhyay (1994),

a1µ1 + EX
[
W 2({α1,X , β1,X}, {α2, β2};A1

n)
]

is the expected payoff of first selecting arm 1, followed by arm 2 and then continuing optimally.
Similarly,

a1µ2 + EY
[
W 1({α1, β1}, {α2,Y , β2,Y };A1

n)
]
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is the expected payoff of selecting arm 2 first and arm 1 second and then continuing optimally.
Subtracting the second payoff from the first one we obtain (a1 − a2)(µ1 − µ2). From this fact,

∆({α1, β1}, {α2, β2};An) = (a1 − a2)(µ1 − µ2)
+EX

[
∆+({α1,X , β1,X}, {α2, β2};A1

n)
]

+EY
[
∆−({α1, β1}, {α2,Y , β2,Y };A1

n)
]

(2)

In the next proposition we show that, given an exact or a right censored observation X1 = x
from arm 1, the advantage of choosing arm 1 over arm 2 increases as x increases.

Proposition 3.1. For all {α1, β1} and {α2, β2} such that β1j ≤ β1j+1 +α1
j+1, for all j ∈ N, and for

all nonincreasing discount sequences An,

∆
(
{α1,x, β1,x}, {α2, β2};An

)
is nondecreasing in x.

Proof. By induction, for n = 1, we have

∆
(
{α1,x, β1,x}, {α2, β2};A1

)
= a1

+∞∑
j=1

∏
i<j

(
1−

α1,x
i

α1,x
i + β1,xi

)
− µ2


= a1(µ1,x − µ2). (3)

Fix x∗ = x + 1. We first prove that µ1,x∗ − µ1,x ≥ 0. For this purpose, we study separately
the j-terms in the sum of µ1,x and µ1,x∗ when j ≤ x, j = x∗ and j > x∗. When x is an exact
observation,

• The j-terms with j ≤ x are the same in µ1,x and µ1,x∗ .

• For j = x∗, in µ1,x we have ∏
i<j

(
β1i + 1

α1
i + β1i + 1

)
β1x

α1
x + β1x + 1

,

whilst in µ1,x∗ , ∏
i<j

(
β1i + 1

α1
i + β1i + 1

)
β1x + 1

α1
x + β1x + 1

,

and the x∗-term of µ1,x∗ is weakly higher.

• For j > x∗, the j-term of µ1,x is∏
i<x

(
β1i + 1

α1
i + β1i + 1

)
β1x

α1
x + β1x + 1

β1x∗

α1
x∗ + β1x∗

∏
x∗<i<j

β1i
α1
i + β1i

,

whilst the j-term of µ1,x∗ is∏
i<x

(
β1i + 1

α1
i + β1i + 1

)
β1x + 1

α1
x + β1x + 1

β1x∗

α1
x∗ + β1x∗ + 1

∏
x∗<i<j

β1i
α1
i + β1i

;
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the j-term of µ1,x∗ is weakly higher if

β1x + 1

α1
x∗ + β1x∗ + 1

≥ β1x
α1
x∗ + β1x∗

,

equivalent to β1x ≤ α1
x∗ + β1x∗ , for all x and for all x∗ > x.

Similarly, the monotonicity of µ1,x can be proved when x is a right censored observation: the j-
terms with k ≤ x∗ are the same in µ1,x and µ1,x∗ , whilst for j > x∗ the two terms in, respectively,
µ1,x and µ1,x∗ are ∏

i<x

(
β1i + 1

α1
i + β1i + 1

)
β1x + 1

α1
x + β1x + 1

β1x∗

α1
x∗ + β1x∗

∏
x∗<i<j

β1i
α1
i + β1i

,

∏
i<x

(
β1i + 1

α1
i + β1i + 1

)
β1x + 1

α1
x + β1x + 1

β1x∗ + 1

α1
x∗ + β1x∗ + 1

∏
x∗<i<j

β1i
α1
i + β1i

,

where the term in µ1,x∗ is weakly higher. Then, for n = 1 the statement is true since µ1,x is
nondecreasing in x and a1 ≥ 0. From the induction hypothesis, we assume the monotonic property
for n = m− 1. By (2),

∆({α1,x, β1,x}, {α2, β2};Am) = (a1 − a2)(µ1,x − µ2)

+EX

[
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
]

+EY
[
∆−({α1,x, β1,x}, {α2,Y , β2,Y };A1

m)
]
. (4)

The first term in the right hand side of (4) is nondecreasing in x since µ1,x is nondecreasing
in x and a1 − a2 ≥ 0. The second and third term are nondecreasing in x from the induction
hypothesis.

Remark 3.2. The constraints β1j ≤ β1j+1 + α1
j+1 are needed for the monotonicity of µ1,x. The

condition is not required if all observations are censored, but is necessary if some observations are
exact. The constraint is naturally verified in the Dirichlet two-armed problem, obtained from the
beta-Stacy in the special case of β1j = β1j+1 + α1

j+1, j ∈ N. Also, a bandit problem with simple
homogeneous processes (Susarla and Van Ryzin 1976; Ferguson and Phadia 1979) for each arm,
corresponding to the case β1j+1 = β1j for all j ∈ N, satisfies the constraints.

The following propositions will be used in Theorems 3.5 and 3.6.

Proposition 3.3. For all {α1, β1} and {α2, β2} as in Proposition 3.1 and for all nonincreasing
discount sequences An, if the condition∏

i<+∞

(
1− α1

i

α1
i + β1i + 1

)
> 0 (5)

is verified, then
lim

x→+∞
∆
(
{α1,x, β1,x}, {α2, β2};An

)
=∞

and
lim
x→0

∆
(
{α1,x, β1,x}, {α2, β2};An

)
= min

x
∆
(
{α1,x, β1,x}, {α2, β2};An

)
.

9



Proof. The result for the x → 0 is a direct consequence of the monotonicity property shown in
Proposition 3.1. We are left to prove the limit to +∞. Consider x increasing to ∞. By induction,
for n = 1, µ1,x diverges to +∞ as x→ +∞ since

lim
x→+∞

µ1,x ≥
+∞∑
j=1

∏
i<+∞

β1i + 1

α1
i + β1i + 1

=
∏
i<+∞

(
1− α1

i

α1
i + β1i + 1

)
·
+∞∑
j=1

1 = +∞. (6)

Then, ∆
(
{α1,x, β1,x}, {α2, β2};A1

)
= a1(µ1,x − µ2) goes to +∞ since µ1,x is divergent and a1 > 0.

Assume now that the statement is true for n = m− 1. By (4),

∆({α1,x, β1,x}, {α2, β2};Am) = (a1 − a2)(µ1,x − µ2)

+EX

[
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
]

+EY
[
∆−({α1,x, β1,x}, {α2,Y , β2,Y };A1

m)
]
.

For the first term (a1 − a2)(µ1,x − µ2) on the right hand side of the formula above there are
two possible cases: a1 − a2 > 0 or a1 − a2 = 0. In the latter case the term is zero, while when
a1−a2 > 0 it diverges to +∞. For the second term, note that ∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
is a nondecreasing sequence in x (by Proposition 3.1), bounded below by 0 (by definition) and
divergent to +∞ (by the induction hypothesis). We can then apply the monotone convergence
theorem and obtain

lim
x→+∞

EX

[
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
]

= EX

[
lim

x→+∞
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)

]
= +∞.

For the third term, notice that

∆({α1,x, β1,x}, {α2,y, β2,y};A1
m) = −∆({α2,y, β2,y}, {α1,x, β1,x};A1

m).

Furthermore, ∆+({α2,y, β2,y}, {α1,x, β1,x};A1
m) converges to 0 as l diverges, and it is bounded above

by
∣∣∆+({α2,y, β2,y}, {α1,x=0, β1,x=0};A1

m)
∣∣. By the dominated convergence theorem we have

lim
x→+∞

EY
[
∆−({α1,x, β1,x}, {α2,Y , β2,Y };A1

m)
]

= − lim
x→+∞

EY
[
∆+({α2,Y , β2,Y }, {α1,x, β1,x};A1

m)
]

= −EY
[

lim
x→+∞

∆+({α2,Y , β2,Y }, {α1,x, β1,x};A1
m)

]
= 0.

Remark 3.4. In Proposition 3.3 condition (5) is required, and the beta-Stacy process in the
discrete case is defined such that condition (1) is verified. Both conditions are satisfied when their
ratio diverges, that is when

lim
j→∞

∏
i<j

(
1 +

1

β1i

)
α1
i + β1i

α1
i + β1i + 1

= +∞.
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This constraint does not pose restrictions, and it is satisfied, as expected, in the special cases of
the homogeneous process and the Dirichlet process.

We finally state the following theorems, showing that there exist break-even points determining,
respectively, a stay-with-a-winner and a switch-on-a-loser optimal strategy. The theorems generalize
Theorem 2.1 and Theorem 2.2 of Chattopadhyay (1994), proving the existence of the break-even
observations in a context more general than the Dirichlet arms, at the cost of some restrictions on
the choice of the parameters of the beta-Stacy process.

Theorem 3.5. For all {α1, β1} and {α2, β2} as in Proposition 3.1, for all nonincreasing discount
sequences An and n ≥ 2, if the condition

lim
x→0

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ ∆

(
{α1, β1}, {α2, β2};An

)
(7)

holds, there exists a break-even point b
(
{α1, β1}, {α2, β2};An

)
such that

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ ∆

(
{α1, β1}, {α2, β2};An

)
if x ≥ b

(
{α1, β1}, {α2, β2};An

)
and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ ∆

(
{α1, β1}, {α2, β2};An

)
if x ≤ b

(
{α1, β1}, {α2, β2};An

)
.

Proof. From Proposition 3.1, ∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
is non decreasing in x, starting from

a value lower than and ∆
(
{α1, β1}, {α2, β2};An

)
and going to infinity (Proposition 3.3). This

is enough to claim that there exists a break-even point b which satisfies the properties in the
theorem.

Theorem 3.6. For all {α1, β1} and {α2, β2} as in Proposition 3.1, for all nonincreasing discount
sequences An and n ≥ 2, if the condition

lim
x→0

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ 0 (8)

holds, there exists a break-even point d
(
{α1, β1}, {α2, β2};An

)
such that

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ 0 if x ≥ d

(
{α1, β1}, {α2, β2};An

)
and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ 0 if x ≤ d

(
{α1, β1}, {α2, β2};An

)
.

Proof. As in the proof of Theorem 3.5, there exists a point d satisfying the properties.

Remark 3.7. The domain of ∆
(
{α1,x, β1,x}, {α2, β2};An

)
, as a function of x, is N, equipped with

a discrete topology for which every subset is open, and all functions from a discrete topological
space to any topological space are continuous. In the two theorems above, it is not possible to
apply the intermediate value theorem for continuous functions since ∆

(
{α1,x, β1,x}, {α2, β2};An

)
,

seen as a function of x, has a domain that is not a connected topological space. As a consequence
it is not guaranteed that an observation exactly equal to the break-even can be observed since it
could be that b

(
{α1, β1}, {α2, β2};An

)
/∈ N or d

(
{α1, β1}, {α2, β2};An

)
/∈ N. Still, the break-evens

give two reference points for optimal choices between the arms.
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Remark 3.8. Conditions (7) and (8) are needed because the support of the base measure of the
beta-Stacy process in limited to (0,+∞). Both Clayton and Berry (1985) and Chattopadhyay
(1994) notice that when the support is bounded, the existence of break-even observations requires
additional conditions at the boundaries. In particular, both conditions intuitively mean that if a
very bad observation from arm 1 is extracted (x close to 0), the expected advantage of choosing
that arm in the next time instant reduces and the alternative arm is preferred under the current
strategy.

We now study the two-armed bandit problem when the base measures of the beta-Stacy pro-
cesses are continuous measures.

4 Break-Even Observations: Continuous Case

In the present section we treat the continuous beta-Stacy two-armed problem. Xk and Yk, respec-
tively from arm 1 and arm 2 at stage k, can assume values in R+ = (0,+∞) and α(·) and β(·) are,
respectively, a continuous measure and a positive function, both defined on R+. α(·) is assumed,
without loss of generality, to have no discontinuity points.

Equation (8) in Walker and Muliere (1997), t ∈ R+, says that

P(X ≤ t) = 1− exp

{
−
∫ t

0

dα1(s)

β1(s)

}
=: 1−

∏
[0,t]

(
1− dα1(s)

β1(s) + α1{s}

)

where
∏

[0,t] denotes the product integral, an operator commonly used in the survival analysis
literature. For any partition a1 = z0 < z1 < · · · < zm = a2, if lm = maxi=1,...,m |xi − xi−1|, the
product integral is defined as∏

[a1,a2]

{1 + dΓ(z)} := lim
lm→0

∏
j

{1 + Γ(zj)− Γ(zj−1)} .

See Gill and Johansen (1990) for a survey of applications of product integrals to survival analysis.
Then, we can compute, in analogy with the discrete case,

EX [X] =

∫ +∞

0
P(X > t)dt =

∫ +∞

0

∏
[0,t]

(
1− dα1(s)

β1(s)

)
dt =: µ1

and, similarly,

EY [Y ] =

∫ +∞

0

∏
[0,t]

(
1− dα2(s)

β2(s)

)
dt =: µ2

assuming, without loss of generality, that µ1 ≤ µ2.
The conditional expectation of a function h1(X), given observations from the first arm, x =

(x1, . . . , xk), is denoted E[h(X)|x], removing the explicit dependence on α1 and β1. We further
define

α1,x(s) = α1(s) +N{s} and β1,x(s) = β1(s) +M(s)

12



for all s ∈ [0,∞). Analogous notation is used for h2(Y ) given y = (y1, . . . , yk) from the second arm.
Therefore, from Theorem 2.3,

P(X ≤ t|x) = 1− exp

{
−
∫ t

0

dα1(s)

β1(s) +N{s}+M(s)

}
·
(

1− N{t}
β(t) +N{t}+M(t)

)
=: 1−

∏
[0,t]

(
1− dα1,x(s)

β1,x(s) + α1,x{s}

)

and, partitioning x = [xexact, xcens] for respectively exact and censored observations, the posterior
mean is

EX [X|x] = P(X /∈ xexact|x) ·
∫ +∞

0
P(X > t|X /∈ xexact, x)dt+

P(X ∈ xexact|x) ·
∑

x∈xexact

xP(X = x|X ∈ xexact, x)

= P(X /∈ xexact|x)

∫ +∞

0

∏
[0,t]

(
1− dα1,xcens(s)

β1,xcens(s) + α1,xcens{s}

)
dt+

P(X ∈ xexact|x)
∑

x∈xexact

xP(X = x|X ∈ xexact, x) =: µ1,x

The function ∆({α1, β1}, {α2, β2};An) can be expressed as in (2). In the following propositions
we study the properties of ∆, with the aim of proving the existence of break-even observations
determining optimal stay-with-a-winner and switch-on-a-loser strategies.

Proposition 4.1. For all {α1, β1} and {α2, β2} such that − ∂
∂xβ

1(x) ≥ α1(x) and for all non-
increasing discount sequences An, ∆

(
{α1,x, β1,x}, {α2, β2};An

)
is nondecreasing in x, for all x ∈

[0,∞).

Proof. By induction, for n = 1, and x censored to the right,

∆
(
{α1,x, β1,x}, {α2, β2};A1

)
= a1(µ1,x − µ2)

= a1

(∫ +∞

0
P(X > t|x)dt− µ2

)

= a1

∫ +∞

0

∏
[0,t]

(
1− dα1(s) + dN(s)

β1(s) +N{s}+M(s)

)
dt− µ2


where N(s) = N{[0, s]}. We first show that µ1,x is nondecreasing in x, for x being censored to the
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right. Notice that µ1,x can be written as

µ1,x =

∫ +∞

0
exp

{
−
∫ t

0

dα1(s)

β1(s) +N{s}+M(s)

}
(

1− N{t}
β(t) +N{t}+M(t)

)
dt

=

∫ x

0
exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+

∫ +∞

x
exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
dt.

The integrand in µ1,x as a function of t has a discontinuity point when t = x, but its value at this
point is ignored since it does not contribute to the evaluation of µ1,x. Take now any x∗ > x, and
separate the cases t ≤ x, t ∈ (x, x∗) and t ≥ x∗:

• When t ≤ x, the integrands in µ1,x and µ1,x∗ are the same.

• When t ≥ x∗, the integrand in µ1,x is

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
,

whilst the integral in µ1,x∗ is

exp

{
−

(∫ x∗

0

dα1(s)

β1(s) + 1
+

∫ t

x∗

dα1(s)

β1(s)

)}
,

with the integrand in µ1,x∗ always greater than or equal to the one in µ1,x.

• Finally, when t ∈ (x, x∗), the integrands in µ1,x and µ1,x∗ are, respectively,

exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
and

exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
,

proving that µ1,x∗ ≥ µ1,x and that the statement is true for n = 1. On the other hand, when x is
not censored

µ1,x = P(X 6= x|x)µ1 + P(X = x|x)x

=

(
1− exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
1

β1(x) + 1

)
µ1 + exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
x

β1(x) + 1
,

and µ1,x∗ ≥ µ1,x for all x∗ > x, if and only if P(X = x|x), the probability of X from arm 1 being
equal to the previous exact observation, is nondecreasing in x. This condition is equivalent to
− ∂
∂xβ

1(x) ≥ α1(x), as required in the proposition.
By induction, assuming the monotonicity property for n = m− 1, the proof is completed along

the lines of Proposition 3.1.
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Remark 4.2. As in the discrete case, monotonicity of the posterior mean is recovered under a
condition on the parameters of the beta-Stacy process. The condition β1j ≤ β1j+1 + α1

j+1, j ∈ N, in

Proposition 3.1 finds its continuous analogue − ∂
∂xβ

1(x) ≥ α1(x), x ∈ R+, in Proposition 4.1. It is
important to note that the condition is not required if only censored observations are extracted from
the arms, but it is necessary in case of exact observations. As in the discrete section, the special
cases of Dirichlet and homogeneous processes are included, and they correspond, respectively, to
− ∂
∂xβ

1(x) = α1(x) and to ∂
∂xβ

1(x) = 0.

Proposition 4.3. For all {α1, β1} and {α2, β2} as in Proposition 4.1 and such that
∫∞
0 dα1(s)/(β1(s)+

1) <∞, for all x ∈ R+ and all nonincreasing discount sequences An,

lim
x→+∞

∆
(
{α1,x, β1,x}, {α2, β2};An

)
=∞

and
lim
x→0

∆
(
{α1,x, β1,x}, {α2, β2};An

)
= min

x
∆
(
{α1,x, β1,x}, {α2, β2};An

)
.

Proof. The case x→ 0 is an immediate consequence of Proposition 4.1. To study the case where x
diverges, we proceed by induction. Note that for n = 1, ∆

(
{α1,x, β1,x}, {α2, β2};A1

)
= a1(µ1,x−µ2)

and

lim
x→+∞

µ1,x =

∫ +∞

0
exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

≥ exp

{
−
∫ +∞

0

dα1(s)

β1(s) + 1

}∫ +∞

0
1dt = +∞,

where the last equality is true since
∫∞
0 dα1(s)/(β1(s) + 1) <∞ is equivalent to

exp

{
−
∫ +∞

0

dα1(s)

β1(s) + 1

}
> 0.

This proves that limx→+∞∆
(
{α1,x, β1,x}, {α2, β2};A1

)
= ∞. The rest of the proof follows the

same lines as the proof of Proposition 3.3.

Remark 4.4. In the above proposition the additional condition
∫∞
0 dα1(s)/(β1(s) + 1) < ∞ is

required. Note that the beta-Stacy process is defined such that
∫∞
0 dα1(s)/β1(s) =∞. These two

improper integrals should have a different asymptotic behavior, a condition that is verified when,
from the limit comparison test for integrals, the limit of the ratio of the two integrands is different
from 1, that is when

lim
s→∞

(
1 +

1

β1(s)

)
6= 1.

For finite β1(s), this is satisfied, and, as expected, includes the special cases of the homogeneous
process and the Dirichlet process. In short, the additional constraint rules out cases of exploding
β1(s). Usually, for some base distribution F0, β

1(s) = M · F0[s,∞), converging to 0 (see Walker
and Muliere 1997).

Proposition 4.5. For all {α1, β1} and {α2, β2} and all nonincreasing discount sequences An,
∆
(
{α1,x, β1,x}, {α2, β2};An

)
is a continuous function of x, for x ∈ [0,∞) censored to the right.
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Proof. It is enough to show that, for any increasing or decreasing sequence {x} converging to x0,

∆
(
{α1,x, β1,x}, {α2, β2};An

)
→ ∆

(
{α1,x0 , β1,x0}, {α2, β2};An

)
.

We provide the proof only for an increasing sequence {x}, since the decreasing sequence case is
similar.

By induction, first fix n = 1, so that ∆
(
{α1,x, β1,x}, {α2, β2};A1

)
= a1(µ1,x − µ2). The con-

tinuity of ∆ in x is shown through the continuity of µ1,x. Taking any increasing sequence {x}
converging to x0, then

lim
x→x0

µ1,x = lim
x→x0

(∫ x

0
exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+

∫ +∞

x
exp

{
−
(∫ x

0

dα1(s)

β1(s) + 1
+

∫ t

x

dα1(s)

β1(s)

)}
dt

)
=

∫ x0

0
exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt

+ exp

{
−
∫ x0

0

dα1(s)

β1(s) + 1

}
· lim
x→x0

∫ +∞

x
exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt,

where the last equality is justified by the continuity in x of∫ x

0
exp

{
−
∫ t

0

dα1(s)

β1(s) + 1

}
dt and exp

{
−
∫ x

0

dα1(s)

β1(s) + 1

}
.

To finally see that µ1,x is continuous, we need to prove the continuity in x of the function

H(x) :=

∫ +∞

x
exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt.

Note that the function H is a parameterized Riemann integral, whose integration extremes are also
dependent on the parameter. H is given by the composition of two functions:

H2(h, x) :=

∫ +∞

h
exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt

and h(x) = x. The latter is obviously continuous. For the continuity of H2, note that∣∣∣∣exp

{
−
∫ t

x

dα1(s)

β1(s)

}∣∣∣∣ ≤ 1,

and we can apply the dominated convergence theorem to the sequence of functions in x

exp

{
−
∫ t

x

dα1(s)

β1(s)

}
for any given value of h ∈ (0,∞). Then

lim
x→x0

H2(h, x) = lim
x→x0

∫ +∞

h
exp

{
−
∫ t

x

dα1(s)

β1(s)

}
dt

=

∫ +∞

h
exp

{
−
∫ t

x0

dα1(s)

β1(s)

}
dt = H2(h, x0).
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Assume now that the statement is true for n = m− 1. By (4),

∆({α1,x, β1,x}, {α2, β2};Am) = (a1 − a2)(µ1,x − µ2)

+EX

[
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
]

+EY
[
∆−({α1,x, β1,x}, {α2,Y , β2,Y };A1

m)
]
.

The first term (a1−a2)(µ1,x−µ2) on the right hand side of the formula is continuous in x (this fol-
lows from the continuity of µ1,x). For the second term, note that ∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
is a nondecreasing sequence in x (by Proposition 4.1), bounded below by 0 (by its definition) and
convergent to ∆+({α1,(x0,X), β1,(x0,X)}, {α2, β2};A1

m) (by the induction hypothesis). We can then
apply the monotone convergence theorem:

lim
x→x0

EX

[
∆+({α1,(x,X), β1,(x,X)}, {α2, β2};A1

m)
]

= EX

[
lim
x→x0

∆+({α1,(x0,X), β1,(x0,X)}, {α2, β2};A1
m)

]
.

For the third term, notice that

∆({α1,x, β1,x}, {α2,y, β2,y};A1
m) = −∆({α2,y, β2,y}, {α1,x, β1,x};A1

m).

Furthermore, ∆+({α2,y, β2,y}, {α1,x, β1,x};A1
m) converges to

∆+({α2,y, β2,y}, {α1,x0 , β1,x0};A1
m)

as x converges (by the induction hypothesis), and it is bounded above by∣∣∆+({α2,y, β2,y}, {α1,x=0, β1,x=0};A1
m)
∣∣ .

By the dominated convergence theorem,

lim
x→x0

EY
[
∆−({α1,x, β1,x}, {α2,Y , β2,Y };A1

m)
]

= − lim
x→x0

EY
[
∆+({α2,Y , β2,Y }, {α1,x, β1,x};A1

m)
]

= −EY
[

lim
x→x0

∆+({α2,Y , β2,Y }, {α1,x, β1,x};A1
m)

]
= EY

[
∆−({α1,x0 , β1,x0}, {α2,Y , β2,Y };A1

m)
]
,

proving continuity for the generic bandit horizon n.

Theorem 4.6. For all {α1, β1} and {α2, β2} as in Proposition 4.3, for all nonincreasing discount
sequences An and n ≥ 2, if condition (7) holds, there exists a break-even point b

(
{α1, β1}, {α2, β2};An

)
such that

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ ∆

(
{α1, β1}, {α2, β2};An

)
if x ≥ b

(
{α1, β1}, {α2, β2};An

)
and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ ∆

(
{α1, β1}, {α2, β2};An

)
if x ≤ b

(
{α1, β1}, {α2, β2};An

)
.
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Proof. From Propositions 4.1 and 4.5, ∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
is nondecreasing in x and con-

tinuous (the latter only for x censored), starting from a value lower than

∆
(
{α1, β1}, {α2, β2};An

)
and growing to infinity (Proposition 4.3). Then there exists a point b

(
{α1, β1}, {α2, β2};An

)
which

satisfies the properties of the theorem.

Theorem 4.7. For all {α1, β1} and {α2, β2} as in Proposition 4.3, for all nonincreasing discount
sequences An and n ≥ 2, if condition (8) holds, there exists a break-even point d

(
{α1, β1}, {α2, β2};An

)
such that

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≥ 0 if x ≥ d

(
{α1, β1}, {α2, β2};An

)
and

∆
(
{α1,x, β1,x}, {α2, β2};A1

n

)
≤ 0 if x ≤ d

(
{α1, β1}, {α2, β2};An

)
.

Proof. As in Theorem 4.6, there exists a point d satisfying the properties.

Remark 4.8. For Theorems 4.6 and 4.7, Remark 3.8 on the boundary conditions is still valid.
Remark 3.7 can be applied if there are exact observations, whilst the intermediate value theorem
for continuous functions guarantees that an observation exactly equal to the break-even can be
observed in case of censored data.

5 Applications

5.1 Geometric beta-Stacy parameters

Fix, for all j ∈ N, β1j = M1·0.9j−1 and α1
j = 0.1M1·0.9j−1 for the first arm, and β2j = M2·0.92j−1 and

α2
j = 0.08M2 · 0.92j−1 for the second arm, for j = 1, 2, . . . , with µ1 < µ2 a priori. Let Mi = αi(N),

i = 1, 2 be the total masses of the measures α1 and α2. Note that different values of M1 and
M2 do not affect prior means, µ1 and µ2, but only posterior means. We observe censored to the
right observations, fix the bandit horizon to n = 3 and the discount sequence is A3 = (1, 0.9, 0.8).
Choosing higher values for n is feasible and to higher values correspond higher processing times.

We generate X
(l)
1 and Y

(l)
1 from the two arms, for l = 1, . . . , T = 100. Then for each X

(l)
1 we

generate T copies of X2 from the first arm, and for each Y
(l)
1 we generate T copies of Y2 from the

second arm. Sampling from prior and posterior beta-Stacy processes is done, respectively, with
Algorithm A and B in Al Labadi and Zarepour (2013). See also De Blasi (2007) for an alternative
way of simulating from the beta-Stacy process. For each scenario, we evaluate µ1,x1 , µ1,(x1,x2), µ2,y1
and µ2,(y1,y2); we then evaluate ∆

(
{α1, β1}, {α2, β2};A3

)
, reported in Table 1 for different values

of M1 and M2. Holding everything else constant, there is a tendency for ∆
(
{α1, β1}, {α2, β2};A3

)
to increase in M2 and decrease in M1. This result is coherent with the exploitation-exploration
trade-off mentioned in the Introduction, and suggests that the less is known about the arm, the
more appealing is to select the arm, since higher information can be gained from its exploration.
Furthermore, as both M1 and M2 increase, ∆

(
{α1, β1}, {α2, β2};A3

)
approaches µ1 − µ2 = −2.5.

When ∆
(
{α1, β1}, {α2, β2};A3

)
is positive, the optimal arm is the first one, and viceversa when is

negative. Most of the times, the difference in the prior means makes the second arm the optimal
one, except in cases with M1 << M2: there are situations where the higher uncertainty (lower M1)
around the base distribution of the first arm, relative to the high confidence in the base distribution
of the second arm (larger M2), makes the first arm preferable to be explored.
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Table 1: Estimated ∆
(
{α1, β1}, {α2, β2};A3

)
, with β1j = M1 · 0.9j−1 and α1

j = 0.1M1 · 0.9j−1 for

the first arm, and β2j = M2 · 0.92j−1 and α2
j = 0.08M2 · 0.92j−1 for the second arm, for j = 1, 2, . . .

and for different values of Mi = αi(N), i = 1, 2.

M2

M1 0.1 1 5 10 100

0.1 -11.0406 0.4198 10.4029 12.1847 11.9691
1 -19.6250 -9.4420 1.2262 3.0780 5.5041
5 -21.7856 -13.2648 -5.3174 -3.6489 -1.8068
10 -21.8101 -13.6430 -6.1519 -4.3691 -2.6009
100 -22.1149 -13.2984 -6.0458 -4.5251 -2.7353

5.2 Discrete uniform beta-Stacy parameters

Consider the beta-Stacy two-armed bandit problem with, for k = 1, 2,

αki = Mk
1

2hk + 1
1i∈{µk−hk,...,µk+hk}, (9)

βki = Mk

(
hk + µk − i

2hk + 1
1i∈{µk−hk,...,µk+hk} + 1i<µk−hk

)
, (10)

where hk ∈ N and hk < µk, and with Mk = αk(N). The parameter hk is positively related to
the variability of the base distribution of the beta-Stacy process of arm k, whilst Mk is negatively
related to the variability around the base measure. We fix µ1 = µ2 = 20, and M1 = h1 = 1,
to see how the expected advantage of one arm over the other is affected by a change in h2 and
in M2, without being affected by different prior means. With µ1 and µ2 equal, the choice od
the optimal arm is entirely driven by the chance of exploring less-known (more volatile) arms.
The rest of the setting is fixed as in the previous example. In Figure 1 we report the value of
∆
(
{α1, β1}, {α2, β2};A3

)
for different h2 and M2. The green dotted line, corresponding to the

case h1 = h2 = 1, shows how a lower variability (higher M2) around the base measure of arm 2,
makes this arm less interesting to explore, in favor of arm 1. The same effect is caused by a change
in the variability of the base measure of arm 2: for h2 − h1 < 0 and for M1 = M2 = 1, arm 1
is preferred, up to a ∆

(
{α1, β1}, {α2, β2};A3

)
≈ 6 for h2 − h1 = −10. Viceversa, higher positive

values of h2 − h1 correspond to higher preference for arm 2. Furthermore, the effect of a change
in M2 seems to dominate: as we increase M2, the distances among the scenarios with different h2
decrease and concentrate on positive expected advantages of the first arm over the second one.

5.3 Exponential beta-Stacy parameters

We extend to the two-armed bandit problem a numerical example in Ferguson and Phadia (1979)
and Walker and Muliere (1997). For the first arm fix β1(s) = exp(−s/10) and dα1(s) = exp(−s/10)/10ds,
whist for the second arm β2(s) = exp(−s/12) and dα2(s) = exp(−s/12)/12ds, for s ∈ R+, so that
µ1 < µ2 a priori. We fix the bandit horizon to n = 3 and the discount sequence A3 = (1, 0.9, 0.8).

As in the discrete example, we generate X
(l)
1 and Y

(l)
1 from the two arms, for l = 1, . . . , T = 150.

Then for each X
(l)
1 we generate T copies of X2 from the first arm, and for each Y

(l)
1 we gener-
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Figure 1: Estimated ∆
(
{α1, β1}, {α2, β2};A3

)
, with parameters as specified in equations (9) and

(10), for different variability around the base measure (M2) and different base measure variability
(h) of the beta-Stacy process from the second arm. The prior means are both equal to µ1 = µ2 = 20,
and M1 = h1 = 1.

0 1 2 3 4 5 6 7

−
6

−
4

−
2

0
2

4
6

Advantage of arm 1

log(M2)

D
el

ta h2 − h1 =  − 10
h2 − h1 =  − 5
h2 − h1 =  0
h2 − h1 =  5
h2 − h1 =  10

ate T copies of Y2 from the second arm, also using Algorithm A and B in Al Labadi and Zare-
pour (2013). In the top-left plot of Figure 2, two randomly extracted prior distributions for the
two arms are reported. For each scenario, we evaluate µ1,x1 , µ1,(x1,x2), µ2,y1 and µ2,(y1,y2); we
then evaluate ∆

(
{α1, β1}, {α2, β2};A3

)
and ∆

(
{α1,x, β1,x}, {α2, β2};A1

3

)
, for x ∈ [0,∞). In the

top-right plot of Figure 2 these ∆s are shown, when the observation in the first and second pe-
riods are respectively exact and censored. Monotonicity in x of ∆

(
{α1,x, β1,x}, {α2, β2};A1

3

)
is

numerically verified. Note also that conditions (7) and (8) are satisfied, so that the two break-
even points exist. Since ∆

(
{α1, β1}, {α2, β2};A3

)
= −2.47 < 0, b

(
{α1, β1}, {α2, β2};A3

)
≤

d
(
{α1, β1}, {α2, β2};A3

)
. In particular, the break-even observation for the stay-with-a-winner

strategy is b
(
{α1, β1}, {α2, β2};A3

)
= 15.42, whilst the break-even for the switch-on-a-loser strat-

egy is d
(
{α1, β1}, {α2, β2};A3

)
= 19.37. Optimal strategies can be completely determined. For

instance, arm 2 is optimally selected at the beginning since ∆
(
{α1, β1}, {α2, β2};A3

)
< 0. If an

exact observation from arm 2 is extracted equal, say, to y1 = 4, for the stay-with-a-winner strategy
arm 1 is optimal at this stage since

∆
(
{α1, β1}, {α2,y1=4, β2,y1=4};A1

3

)
= −1.60,

greater than ∆
(
{α1, β1}, {α2, β2};A3

)
= −2.47. At this stage arm 1 would not be optimal for the

switch-on-a-loser strategy, since ∆
(
{α1, β1}, {α2,y=4, β2,y=4};A1

3

)
< 0. Suppose now a censored

observation from arm 1 equal, say, to x2 = 15.5 is observed, for which

∆
(
{α1,x2=15.5, β1,x2=15.5}, {α2,y1=4, β2,y1=4};A2

3

)
= −1,

greater than ∆
(
{α1, β1}, {α2,y1=4, β2,y1=4};A1

3

)
. Therefore in the last stage arm 1 is again optimal

for the stay-with-a-winner strategy. Furthermore, in the bottom-left plot we report

∆
(
{α1,x, β1,x}, {α2, β2};A1

3

)
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Figure 2: Top-left: Two distributions sampled from the beta-Stacy process of Walker and Muliere
(1997), with algorithm A in Al Labadi and Zarepour (2013). The black line is from arm 1,
the red one from arm 2, with parameters β1(s) = exp(−s/10), dα1(s) = exp(−s/10)/10ds,
β2(s) = exp(−s/12) and dα2(s) = exp(−s/12)/12ds, for s ∈ [0,∞). Top-right: in blue
∆
(
{α1,x, β1,x}, {α2, β2};A1

3

)
, in green ∆

(
{α1, β1}, {α2, β2};A3

)
. The 0 value is also highlighted

in red. The intersections determine the break-even observations of the two strategies outlined in
the text. Bottom-left: in blue ∆

(
{α1,x, β1,x}, {α2, β2};A1

3

)
for the beta-Stacy bandit problem. The

green line represents the corresponding quantity for the Dirichlet bandit that ignores the censorship.
Bottom-right: Error probability of the stay-with-the winner strategy implied by the Dirichlet bandit
problem, when censorship is neglected, as function of the first observation from arm 1.
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when x ∈ [0,∞) is right-censored, and the expected advantage of arm 1 if the data were incor-
rectly supposed to be exact. In other words, we compare the beta-Stacy bandit problem with
the corresponding Dirichlet bandit problem that ignores the censorship, to quantify the difference
between the two in the simulation setting and highlight the relevance of properly accounting for
right-censored data. There is a range of values from 7.97 to 16.95 at which the Dirichlet bandit
problem would take the wrong strategy, since ∆

(
{α1,x, β1,x}, {α2, β2};A1

3

)
would be of opposite

sign, relative to the corresponding beta-Stacy quantity. The break-even for the Dirichlet bandit is
too low, since it judges the observations to be exact and therefore does not account for the increased
chance of observing higher values in the future. If we repeat the experiment 150 times for each
value of x from 1 to 30, we can compute the probability for the Dirichlet bandit being in error in
the choice of the optimal arm, after the observation of x from arm 1. The probability is reported
in the bottom-right plot of Figure 2.
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6 Conclusions and further directions

We have studied Bayesian nonparametric bandit problems with right-censored data, where two
independent arms are generated by beta-Stacy processes. The problem extends the one-armed
and two-armed Dirichlet bandit problem of Clayton and Berry (1985) and Chattopadhyay (1994)
since the beta-Stacy process simplifies to the Dirichlet process for a special choice of the process
parameters and in the absence of censored observations. We have shown some properties of the
expected advantage of the first arm over the second arm, and the existence of stay-with-a-winner and
switch-on-a-loser optimal strategies, under non-restrictive constraints on the process parameters.

Our framework can be further extended in several directions to different bandit strategies and
multi-armed problems. First, the common formulation of the Bernoulli bandit can be replicated
through the choice of Bernoulli base measures, centered on success probabilities that are learnt as
observations are collected. Second, semi-uniform strategies with greedy behaviour can be addressed:
epsilon-greedy and epsilon-first strategies (Watkins 1989; Sutton and Barto 1998) that dedicate a
proportion of phases to, respectively, random and purely exploratory phases, can be derived by
randomizing the reinforcement learning mechanism of the arms’ parameters (Muliere et al. 2006);
epsilon-decreasing and VBDE strategies (Cesa-Bianchi and Fisher 1998; Tokic 2010) would require
a beta-Stacy parameter update mechanism depedent on the number of steps or on the values
extracted from the arms. Third, probability matching strategies such as Thompson sampling
(Thompson 1933) are easy to implement in our framework: in multi-armed bandit problems, beta-
Stacy random distributions can be sampled from their posterior distributions at each stage, and,
conditional to the sample, some reward related to the single arm may be computed and all rewards
compared. Fourth, the extension to multi-armed contextual bandits (Langford and Zhang 2008)
can be implemented by introducing dependence of the arm parameters on external regressors,
or introducing dependence between Bayesian nonparametric arms through partial exchangeability
(de Finetti 1938, 1959), for instance with the mixture of Dirichlet processes of Antoniak (1974),
the Bivariate Dirichlet process of Walker and Muliere (2003) or the Bivariate beta-Stacy process
of Muliere et al. (2007). In this direction, Battiston et al. (2016) adopt hierarchical Poisson-
Dirichlet processes in multi-armed bandit problems. Fifth, the sequential nature of the Bayesian
framework and the flexibility of nonparametric priors permit to handle more general cases of non-
stationary bandit problems (Garivier and Moulines 2008), where the underlying base distribution
of the beta-Stacy processes can change during play: in this context all past observations simply
affect the modified priors of the new models. Finally, it could be of interest to apply the proposed
framework to study the results in Gittins (1979) and Gittins et al. (2011) in multi-armed Bayesian
nonparametric problems: in this case, Dynamic Allocation Indices may be computed from the
simulations of the stochastic processes related to each arm.
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