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Abstract

Correlation between microstructure noise and latent financial logarithmic returns is an em-
pirically relevant phenomenon with sound theoretical justification. With few notable exceptions,
all integrated variance estimators proposed in the literature are not designed to explicitly han-
dle such a dependence, or handle it only in special settings. In the present paper we provide
an integrated variance estimator that is robust to correlated noise and returns. For this pur-
pose, a generalization of the Forward Filtering Backward Sampling algorithm is proposed, to
provide a sampling technique for a latent conditionally Gaussian random sequence. We apply
our methodology to intraday Microsoft prices, and we compare it in simulation with established
alternatives, showing an advantage in terms of bias and dispersion.

Keywords: Conditionally Gaussian Random Sequences; Forward Filtering and Backward
Sampling; Integrated Variance; Kalman Filtering; State Space Models.

1 Introduction

Many statistical problems can be formulated as State Space models, where a latent stochastic
process {θt} evolves in time with dynamics given by a transition equation θt+1 = a1(t)θt+b1(t)ε1(t+
1), and the process is observed only through the noisy process {ξt}, corresponding, at time t + 1,
to ξt+1 = Ã1(t)θt+1 + B̃2(t)ε2(t + 1), where ε1(t) and ε2(t) are Gaussian random variables and
a1(t), b1(t), Ã1(t) and B̃1(t) are time-varying parameters. Kalman (1960) proposed the celebrated
Kalman filtering algorithm as optimal solution, in mean square sense, to the filtering problem, that
is the problem of estimating the unobservable θt by means of observations ξt = {ξ1, . . . , ξt}. The
Kalman filter is the starting point in Fruwirth-Schnatter (1994) and Carter and Kohn (1994) for
an iterative sampling procedure, today commonly known as Forward Filtering Backward Sampling
(FFBS), for obtaining posterior samples of {θt}.

Liptser and Shiryayev (1972, 2001a,b) introduce the so-called conditionally Gaussian random
sequences, whose main two features are: (a) model parameters depend in a measurable arbitrary
way from past observations or from other random quantities, but once this dependence is realized,
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the remaining randomness can be expressed in terms of Gaussian random variables, (b) correlation
between ξt and θt is introduced through the presence, in both the transition and measurement
equations, of common Brownian motions.

The Mixture Kalman filter of Chen and Liu (2000) and the Gibbs samplers of Sethuraman
(1994) and Carter and Kohn (1996) are some relevant examples that, among other things, generalize
Kalman filtering and posterior sampling of the latent stochastic process along direction (a) above.
Other simulation techniques as the Extended Kalman filter of Gelb (1972), the Monte Carlo filter
of Kitagawa (1987) and the Particle filter of Gordon et al. (1993) do not require the conditional
Gaussianity, but are based on some form of approximation. Gelb (1972) provides a suboptimal
solution to the filtering problem, by linearizing the transition equation. Kitagawa (1987) and
Gordon et al. (1993) approximate the posterior distribution of the latent stochastic process through
a weighted set of particles. de Jong and Shephard (1995) and Durbin and Koopman (2002) also
developed FFBS algorithms. In particular, the methodology of de Jong and Shephard (1995) define
the conditionally, linear Gaussian state space model in terms of a single source of error, and it is
able to reproduce correlated shocks between the measurement equation and transition equation.

Harvey and Shepard (1996) and Sandmann and Koopman (1998) point out the empirical rel-
evance of direction (b) for modeling the asymmetric behavior that is often found in stock prices,
and Hull and White (1987) emphasize the role of correlation between observed prices and latent
stochastic volatility, suggesting it can cause significant biases in financial option pricing, if neglected.
Among others, Brandt and Kang (2004) and Jacquier et al. (2004) further study this phenomenon
in the financial economic literature. Another concrete situation where neglecting the correlation
in the two equations can be misleading, and this is the financial setting that motivates the de-
velopment of the estimator proposed in the current paper, is in the estimation of the integrated
volatility, when there is a dependence between microstructure noise and latent financial logarithmic
returns, a phenomenon empirically found in Hansen and Lunde (2006) and theoretically justified
in Diebold and Strasser (2013). Many integrated variance estimators proposed in the literature
(Andersen et al. 2003; Ait-Sahalia et al. 2005; Zhang et al. 2005; Zhang 2006; Ait-Sahalia et al.
2010; Barndorff-Nielsen et al. 2011; Corsi et al. 2014; Peluso et al. 2014) are not designed to handle
such a dependence, except for Barndorff-Nielsen et al. (2008), but only in the special setting of a
linear model of endogeneity. To our knowledge, the only papers that deal with this endogenous
noise are Kalnina and Linton (2008), which propose a robust version of Zhang et al. (2005), and
the pre-averaging estimator of Jacod et al. (2009). Bandi and Russell (2011) despite assuming
exogenous noise, still provides a good benchmark method, since empirically found to perform well
even if the underlying assumptions are violated.

In the present paper we propose a realized variance estimator of the daily integrated volatility
that is robust to the presence of correlation between microstructure noise and latent returns, gen-
eralizing the setting of Ait-Sahalia et al. (2010). For this purpose, we extend the FFBS algorithm
from standard State Space models to the more general context of Liptser and Shiryayev (1972)
in an exact form. The algorithm is presented in Section 3, after an introduction to conditionally
Gaussian random sequences in Section 2. The motivating financial problem is studied in Section 4,
and finally the conclusions are drawn in Section 5.
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2 Conditionally Gaussian Random Sequences

In this Section we introduce the theoretical framework developed in Liptser and Shiryayev (1972)
(see also Liptser and Shiryayev 2001a and Liptser and Shiryayev 2001b), with focus on the recursive
equations of conditionally Gaussian random sequences for the solution to the filtering problem.

On a probability space (Ω,F , P ), the random sequence {θt, ξt}t, t = 1, 2, . . . , with θt =
(θ1(t), . . . , θk(t)) and ξt = (ξ1(t), . . . , ξl(t)), defines the system of recursive equations

θt+1 = a0(t, ω) + a1(t, ω)θt + b1(t, ω)ε1(t+ 1) + b2(t, ω)ε2(t+ 1) (1)

ξt+1 = A0(t, ω) +A1(t, ω)θt +B1(t, ω)ε1(t+ 1) +B2(t, ω)ε2(t+ 1), (2)

where ε1(t) = (ε1,1(t), . . . , ε1,k(t)) and ε2(t) = (ε2,1(t), . . . , ε2,l(t)) are independent Gaussian random
variables with expected value E(εi,j(t)) = 0 and E(εi1,j1(t)εi2,j2(s)) = δ(i1, i2)δ(j1, j2)δ(t, s), where

δ(x, y) =

{
1, x = y
0, x 6= y

In the sequel, θt and ξt are, respectively, unobservable and observed vectors, with θ0|ξ0 ∼ Φ(m, γ),
that is Gaussian with mean m and variance γ. a0(t, ω) and A0(t, ω) are vector functions, and
a1(t, ω), A1(t, ω), b1(t, ω), b2(t, ω), B1(t, ω) and B2(t, ω) are matrix functions, square integrable
and measurable at time t. All the vector and matrix functions at time t are collected in D(t, ω). In

Liptser and Shiryayev (1972), D(t, ω) is assumed to be Fξt -measurable, where Fξt = σ{ω : ξ0, . . . , ξt}
is the σ-algebra generated by the random variables ξ0, . . . , ξt. This assumption will be relaxed in
Section 3, where measurability with respect to σ-algebras generated by other random variables will
be considered. Denote b ◦ b = b1b

∗
1 + b2b

∗
2, b ◦ B = b1B

∗
1 + b2B

∗
2 and B ◦ B = B1B

∗
1 + B2B

∗
2 where

X∗ is the transposed matrix of X and X+ = Y ∗(Y Y ∗)−2Y is the pseudo-inverse matrix of X, with
Y such that Y ∗Y = X. For ease of notation we suppress the dependence on ω.

Theorem 2.1. Suppose that E(||θ0||2+ ||ξ0||2) <∞, |(a1(t, ω))ij | < L and |(A1(t, ω))ij | < L, where
L is a positive constant. Then, θt|ξ0, . . . , ξt ∼ Φ(m(t), γ(t)), where m(t) and γ(t) are determined
from the recursive equations

m(t+ 1) = [a0(t) + a1(t)m(t)] + [b ◦B(t) + a1(t)γ(t)A∗1(t)]

·[B ◦B(t) +A1(t)γ(t)A∗1(t)]
+ · [ξt+1 −A0(t)−A1(t)m(t)] (3)

γ(t+ 1) = [a1(t)γ(t)a∗1(t) + b ◦ b(t)]− [b ◦B(t) + a1(t)γ(t)A∗1(t)]

·[B ◦B(t) +A1(t)γ(t)A∗1(t)]
+ · [b ◦B(t) + a1(t)γ(t)A∗1(t)]

∗ (4)

with the initial conditions m(0) = m and γ(0) = γ.

Proof. See Liptser and Shiryayev (1972), Theorem 3.2.

An important special case is when D(t, ω) is not random, but a deterministic function of time
t. In this case, if the vector (θ0, ξ0) is Gaussian, the process (θt, ξt) will also be Gaussian, with
non random covariance γ(t). In this setting it is possible to reformulate the system of recursion
equations (1) and (2) so that the dependence between ξt and θt is explicit and recover the Kalman
filter as special case.
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The random sequence {θt, ξt}t is known as conditionally Gaussian since it follows a Gaussian
distribution at any specific time t, conditional on the knowledge of D(t, ω) in the recursive equa-
tions. Note that this is not a restrictive assumption, since unconditionally the dependence in time
and space is not necessarily linear (for instance when the distribution of a1(t) depends on θt) and
the disturbances are location-scale mixture of Gaussian random variables. A wide class of con-
tinuous distributions may be constructed as location-scale mixture of Normal distributions, such
as contaminated Normals, Student’s t, Logistic, Laplace and Stable distributions. As specified in
Marron and Wand (1992), one way of seeing that the class of Normal mixture densities is a very
broad one comes from the fact that any density, even strongly multimodal and asymmetric, can be
approximated arbitrarily well by a Normal mixture. This is a setting of interest in finance, where we
often observe skewed return distributions (see, among others, Barndorff-Nielsen 1997 and Azzalini
and Capitanio 2003). Furthermore, return distributions can be contaminated by outliers that are
not easy to detect and correct for, and that can severely distort a non robust estimation methodol-
ogy, causing for instance relevant consequences on asset allocation studies (Best and Grauer 1992).
Finally, as pointed out in Engle and Smith (1999), multimodal distributions can model situations
of regime switches, known to have a relevance in option pricing (see for instance Buffington and
Elliott 2002) and mean-variance portfolio selection (Zhou and Yin 2003, among others).

3 Sampling Algorithm of the Latent Process

The system (1) and (2) can be reformulated to highlight the relation between ξt and θt, so that the
sequence of the observations can be interpreted as a realization of a stochastic Markovian latent
process with measurement noise:

θt+1 = a0(t, ω) + a1(t, ω)θt + b1(t, ω)ε1(t+ 1) + b2(t, ω)ε2(t+ 1) (5)

ξt+1 = Ã0(t, ω) + Ã1(t, ω)θt+1

+B̃1(t, ω)ε1(t+ 1) + B̃2(t, ω)ε2(t+ 1), (6)

where a0(t, ω), a1(t, ω), b1(t, ω), b2(t, ω), Ã0(t, ω), Ã1(t, ω), B̃1(t, ω), B̃2(t, ω) are stored in D̃(t, ω).
This alternative representation is much more common in the econometrics, financial and engi-
neering literature, and it can be derived by the system (1) and (2) since, substituting (5) in (6),
ξt+1 can be written as

ξt+1 = Ã0(t, ω) + Ã1(t, ω)[a0(t, ω) + a1(t, ω)θt + b1(t, ω)ε1(t+ 1)

+b2(t, ω)ε2(t+ 1)] + B̃1(t, ω)ε1(t+ 1) + B̃2(t, ω)ε2(t+ 1),

clarifying that the relation between D(t, ω) and D̃(t, ω) is given by
A0(t) = Ã0(t) + Ã1(t)a0(t)

A1(t) = Ã1(t)a0(t)

B1(t) = Ã1(t)b1(t) + B̃1(t)

B2(t) = Ã1(t)b2(t) + B̃2(t).

(7)

Given the system (5)-(6), from Theorem 2.1 it follows that θt|ξ1, . . . , ξt ∼ Φ(m(t), γ(t)), where m(t)
and γ(t) are obtained by the recursive equations (3) and (4), but with A0(t), A1(t), B1(t) and B2(t)
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replaced by the respective right hand sides in (7). When b2(t) = 0 and B̃1(t) = 0 (or, equivalently,
when b1(t) = 0 and B̃2(t) = 0) for all t, system (5)-(6) simplifies to

θt+1 = a0(t, ω) + a1(t, ω)θt + b1(t, ω)ε1(t+ 1) (8)

ξt+1 = Ã0(t, ω) + Ã1(t, ω)θt+1 + B̃2(t, ω)ε2(t+ 1), (9)

for which the filtering problem can be solved through the Kalman filtering iterations:

m(t+ 1) = [a0(t) + a1(t)m(t)] + [a1(t)γ(t)A∗1(t)]

·[B2
2(t) +A1(t)γ(t)A∗1(t)]

+ · [ξt+1 −A0(t)−A1(t)m(t)]

γ(t+ 1) = [a1(t)γ(t)a∗1(t) + b21(t)]− [a1(t)γ(t)A∗1(t)]

·[B2
2(t) +A1(t)γ(t)A∗1(t)]

+ · [a1(t)γ(t)A∗1(t)]
∗

In the simplified setting of model (11)-(12), Fruwirth-Schnatter (1994) and Carter and Kohn (1994)
introduce the Forward Filtering and Backward Sampling (FFBS) algorithm, to sample θT a poste-
riori from

p(θT |ξT , D̃(1), . . . , D̃(T )) ∝
T∏
t=1

φ(VtWt, Vt),

where

V −1t = A∗1(t)(B
2
2(t))+A1(t) + a∗1(t)(b

2
1(t))

+a1(t) + γ+(t)

Wt = A1(t)(B
2
2(t))+(ξt+1 −A0(t)) + a∗1(t)(b

2
1(t))

+(θt+1 − a0(t)) + γ+(t)m(t).

Exploiting an extended factorization of the posterior density of θ, induced by the common
Brownian motions, we derive a generalized version of the FFBS algorithm, to jointly sample

θ1, . . . , θT |ξ1, . . . , ξT , D̃(1), . . . , D̃(T )

from the system (5)-(6) (an equivalent algorithm for the system (1)-(2) can also be formulated).
For easier reference in the sequel, we denote this algorithm as G-FFBS.

Proposition 3.1. Given ξT generated from model (5)-(6), then

p(θT |ξT ) ∝
T∏
t=1

φ(VtWt, Vt),

where

V −1t = (A1(t)−B ◦ b(t)(b ◦ b)+(t)a1(t))
∗Σ+

t (A1(t)−B ◦ b(t)(b ◦ b)+(t)a1(t))

+a∗1(t)(b ◦ b)+(t)a1(t) + γ+(t)

Wt = (A1(t)−B ◦ b(t)(b ◦ b)+(t)a1(t))Σ
+
t (ξt+1 −A0(t)

−B ◦ b(t)(b ◦ b)+(t)(θt+1 − a0(t))) + a∗1(t)(b ◦ b)+(t)(θt+1 − a0(t)) + γ+(t)m(t)

Σt = B ◦B(t)−B ◦ b(t)(b ◦ b)+(t)B ◦ b∗(t).
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Proof. Using the notation xt = {x1, . . . , xt} and suppressing the dependence on D̃(1), . . . , D̃(T ),
G-FFBS exploits the factorization

p(θT |ξT ) =
T∏
t=1

p(θt|θt+1, . . . , θT , ξ
T ), (10)

Noting that

p(θT , ξT ) =
T∏
t=1

p(θt, ξt|θt−1)

=
T−1∏
t=0

φ

{(
ξt+1

θt+1

)
;

(
A0(t) +A1(t)θt
a0(t) + a1(t)θt

)
,

(
B ◦B(t) b ◦B(t)

(b ◦B(t))∗ b ◦ b(t)

)}
,

ξt+1|θt+1, θt ∼ φ(µt,Σt), where

µt = A0(t) +A1(t)θt +B ◦ b(t)(b ◦ b)+(t)(θt+1 − a0(t)− a1(t)θt)

Thus the factor p(θt|θt+1, . . . , θT , ξ
T ) in (10) can be expressed as

p(θt|θt+1, . . . , θT , ξ
T ) ∝ p(θt, . . . , θT , ξt+1, . . . , ξT |ξt)

=

T∏
i=t+1

p(ξi, θi|θi−1) · p(θt|ξt)

∝ p(ξt+1|θt+1, θt)p(θt+1|θt)p(θt|ξt)

∝ exp

{
−1

2

(
(ξt+1 − µt)∗Σ+

t (ξt+1 − µt)
)}

· exp

{
−1

2

(
(θt+1 − a0(t)− a1(t)θt)∗(b ◦ b)+(t)(θt+1 − a0(t)− a1(t)θt)

)}
· exp

{
−1

2

(
(θt −m(t))∗γ+(t)(θt −m(t))

)}
∝ φ

(
VtWt, Vt

)

The proposed generalization over the traditional FFBS finds relevant empirical justification in
the motivating example that will be discussed in Section 4. The algorithm requires a forward
step in which the quantities of interest m(t) and γ(t) are computed following Theorem 2.1, and
a backward step where the latent process is sampled according to the factorization in (10). In
the traditional FFBS algorithm the factor at time t in (10) is proportional to p(θt+1|θt)p(θt|ξt),
whilst in the proposed G-FFBS algorithm, there is the additional term p(ξt+1|θt+1, θt), since the
correlation between measurement and transition errors generates a conditional dependence between
ξt+1|θt+1 and θt. When B̃1(t) = 0 and b2(t) = 0 for any t or when B̃2(t) = 0 and b1(t) = 0, there is
no correlation between the two errors, the conditional independence of the observations is restored,
and G-FFBS reduces to FFBS.
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For posterior inference on any function of the latent stochastic process g(θT ), three cases can
be distinguished: (i) When D̃(t, ω) is measurable at time t, (ii) D̃(t, ω) is unknown at time t but
with known dynamics, (iii) D̃(t, ω) is unknown at time t and with unknown dynamics. In case (i),
D̃(t, ω) is measurable at time t with respect to the σ-algebra generated by ξT or by some other
observables, and any number of samples from θT |ξT can be obtained through the G-FFBS. In (ii) a
simple procedure is to recursively estimate D̃(t, ω) with D̂(t, ω), estimated by the known dynamics,
and then use D̂(t, ω) instead of D̃(t, ω) in the G-FFBS (see, for instance Smith and West 1983
and Campagnoli et al. 2001 for, respectively, a biometric and a financial application). When in
(iii), D̃(t, ω) is unknown and can’t be parametrically forecasted: a complete Bayesian model is
specified, with prior π(D̃(1, ω), . . . , D̃(T, ω)), and MCMC procedures are used to sample from the
joint posterior P(θT , D̃(1), . . . , D̃(T )|ξT ), by repeatedly sampling at each iteration

• P(θT |D̃(1), . . . , D̃(T ), ξT ),

• P(D̃(1), . . . , D̃(T )|θT , ξT ) ∝ P(θT , ξT |D̃(1), . . . , D̃(T ))π(D̃(1, ω), . . . , D̃(T, ω)).

The first step is executed through G-FFBS, and the whole algorithm is a Gibbs sampler (Geman
and Geman 1984; Gelfand and Smith 1990) or a Metropolis-Hastings sampler (Metropolis et al.
1953; Hastings 1970), depending on π(D̃(1, ω), . . . , D̃(T, ω)) being a conjugate prior or not.

4 Robust Integrated Variance Estimation

In this Section the developed sampling algorithm is applied to our motivating financial problem.
Suppose that the logarithmic price of a given financial asset follows, within the trading day, the
diffusion process

dθt = c(t)dZt

where c(t) is the instantaneous volatility and {Zt}t is the standard Brownian motion. IV =∫
c2(t)dt is known as integrated variance and is of interest as a measure of the true daily volatility.

What we actually use for estimation is the discrete approximation of the continuous time process
above: θ(t+1)/T = θt/T + ct/T

√
1/TZt, where T−1 is the discrete time interval between adjacent

observations, θt/T − θ(t−1)/T = Op(T
−1/2) and Zt standard Gaussian. IV is a latent quantity,

usually estimated with the so-called realized variance RV =
∑T

t=1(θt/T − θ(t−1)/T )2, that is the
sum of all intraday high frequency observed logarithmic returns. RV is a consistent and efficient
estimator of IV (Andersen et al. 2003) when there is no microstructure noise, that is when θt/T for
t = 1, . . . , T is directly observed. When microstructure noise is introduced, we observe ξt/T instead

of θt/T , and the computable realized variance becomes R̃V =
∑T

t=1(ξt/T − ξ(t−1)/T )2. Note that
we do not specify the continuous-time version of the measurement equation: the observed price
relates to the latent price only through the microstructure noise, consequence of trades occurring
at discrete times. Unfortunately, R̃V loses the good properties of RV , since it is biased and
inconsistent for the true integrated variance. As this problem arises mainly when the frequency
of the observations approaches zero, it can be attenuated by sparse sampling, but this involves
a loss of information because of the discarded data. Recently, some authors have followed the
approach suggested by Ait-Sahalia et al. (2005) of sampling as often as possible and modeling
the noise. In particular, a first consistent estimator of IV for financial data contaminated by
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microstructure noise has been proposed in Zhang et al. (2005) (whose order of convergence is
improved in Zhang 2006), later followed by Barndorff-Nielsen et al. (2008), that propose a kernel-
based estimator. There have been numerous extensions of the framework with noisy observations
that account for additional empirically observed data irregularities, as asyncronicity of multivariate
log prices, serially dependent microstructure noise, positivity of the estimator (see, for instance, Ait-
Sahalia et al. 2010; Barndorff-Nielsen et al. 2011; Corsi et al. 2014; Peluso et al. 2014). Less attention
has been posed on the dependence between microstructure noise and latent financial logarithmic
returns, empirically found in Hansen and Lunde (2006). Also, common microstructure theories from
financial economics literature induce a correlation between latent returns and microstructure noise
(Diebold and Strasser 2013), and this correlation gives indication on the presence of uninformed
trades, risk aversion and market makers learning speed. All the estimators mentioned above are
not designed for such dependence, except for Barndorff-Nielsen et al. (2008), but only for a linear
model of endogeneity. To our knowledge, the only papers that deal with this endogenous noise
are Kalnina and Linton (2008), which propose a robust version of Zhang et al. (2005), and the
pre-averaging estimator of Jacod et al. (2009). The kernel estimator of Bandi and Russell (2011)
also shows robustness properties that justify its adoption in a setting with correlation between
microstructure noise and latent returns.

The framework of conditionally Gaussian sequences, with the sampling algorithm introduced
above, can be used to propose a new estimator of the integrated variance that is robust to the
presence of correlation between microstructure noise and latent returns. Consider the bivariate
system

ξ(t+1)/T = θ(t+1)/T + B̃1(t)ε1(t+ 1) + B̃2(t)ε2(t+ 1) (11)

θ(t+1)/T = θt/T + b1(t)ε1(t+ 1), (12)

in which a0(t) = Ã0(t) = b2(t) = 0 and a1(t) = Ã1(t) = 1 for any t. Model (11)-(12) is completed
by characterizing the prior distributions B̃1(t) ∼ φ(µB,t, σ

2
B,t), b1(t) ∼ φ(µb,t, σ

2
b,t) and finally

B̃2(t) ∼ IG(αB,t, βB,t). The correlation between microstructure noise and true returns is introduced
through the random variable ε1, present in both the equations of the system. Note that Hansen
and Lunde (2006) found that microstructure noise and latent return are negatively correlated,
and with a Gaussian prior on B1(t) it is possibile to center, a priori, this correlation on a negative
value. Furthermore, Diebold and Strasser (2013) point out that a negative correlation appears most
realistic, and that markets with no evidence of significant negative correlation are likely subject to
an extraordinary microstructure effect such as high risk aversion.

The full conditional of θT is sampled with the G-FFBS. The forward step of the G-FFBS
algorithm is performed through the following filtering iterations:

m(t+ 1) = m(t) +
b1(t)B1(t) + γ(t)

B2
1(t) +B2

2(t) + γ(t)
(ξ(t+1)/T −m(t))

= m(t) +
b1(t)(b1(t) + B̃1(t)) + γ(t)

(b1(t) + B̃1(t))2 + B̃2
2(t) + γ(t)

(ξ(t+1)/T −m(t)) (13)

γ(t+ 1) = (γ(t) + b21(t))−
(b1(t)B1(t) + γ(t))2

B2
1(t) +B2

2(t) + γ(t)

= (γ(t) + b21(t))−
(b1(t)(b1(t) + B̃1) + γ(t))2

(b1(t) + B̃1(t))2 + B̃2
2(t) + γ(t)

. (14)
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Note that if B̃1(t) = 0 ∀t, the filtering iterations (13) and (14) simplify to the well known Kalman
filter iterations (Kalman 1960). For the backward sampling step, θT |ξT are sampled from (10),
where

p(θt/T |θ(t+1)/T , . . . , θT , ξ
T ) ∝ p(ξ(t+1)/T |θ(t+1)/T , θt/T )p(θ(t+1)/T |θt/T )p(θt/T |ξt)

= φ

(
ξ(t+1)/T ; θt/T +

B1(t)

b1(t)
(θ(t+1)/T − θt/T ), B2

2(t))

)
φ
(
θ(t+1)/T ; θt/T , b

2
1(t)
)
φ
(
θt/T ;m(t), γ(t)

)
∝ φ(VtWt, Vt),

with

Vt =


(

1− B1(t)
b1(t)

)2
B2

2(t)
+

1

b21(t)
+

1

γ(t)


−1

=

1−

(
1− B1(t)

b1(t)

)2
b21(t)γ(t) +B2

2(t)γ(t)(
1− B1(t)

b1(t)

)2
b21(t)γ(t) +B2

2(t)γ(t) +B2
2(t)b21(t)

 γ(t)

VtWt = Vt

1− B1(t)
b1(t)

B2
2(t)

(
ξ(t+1)/T −

B1(t)

b1(t)
θ(t+1)/T

)
+
θ(t+1)/T

b21(t)
+
m(t)

γ(t)


=

1−

(
1− B1(t)

b1(t)

)2
b21(t)γ(t) +B2

2(t)γ(t)(
1− B1(t)

b1(t)

)2
b21(t)γ(t) +B2

2(t)γ(t) +B2
2(t)b21(t)

m(t) +

(
1− B1(t)

b1(t)

)(
ξ(t+1)/T

θ(t+1)/T
− B1(t)

b1(t)

)
b21(t)γ(t) +B2

2(t)γ(t)(
1− B1(t)

b1(t)

)2
b21(t)γ(t) +B2

2(t)γ(t) +B2
2(t)b21(t)

θ(t+1)/T .

Note that B1(t) = B̃1(t) + b1(t) and B2(t) = B̃2(t). The correlation between transition and
measurement error can be removed by fixing B̃(t) = 0. In this case, B1(t) = b1(t) and, as expected,

Vt =
(

1− γ(t)
b21(t)+γ(t)

)
γ(t) and WtVt =

(
1− γ(t)

b21(t)+γ(t)

)
m(t)+ γ(t)

b21(t)+γ(t)
θ(t+1)/T , as in the usual FFBS.

The difference between FFBS and G-FFBS can be crucial for the estimation of the latent
stochastic process. For instance, for a correlation between microstructure noise and financial latent
return of -0.10 (adopted in the simulation study of Kalnina and Linton 2008), a noise to signal ratio
of 1.5 and an annualized latent variance of the transition error of 0.06, we simulate 500 trading
days, with T = 23400 seconds per business day. The order of magnitude of the microstructure
noise is controlled by B̃2, the parameter linked to ε2. For each day we compute the estimated
quadratic variation for FFBS and G-FFBS, compared in Figure 1, where it is clear that neglecting
the correlation has an impact on the inference of the latent process. As expected, the distance
between the two methodologies widens as more correlation is introduced in the system (simulation
results not shown for brevity).
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Figure 1: Relative Bias between Quadratic Variation simulated with FFBS and G-FFBS and the
true latent value, over 500 trading days, when the correlation between microstructure noise and
financial latent return is -0.10.

To sample from the remaining full conditional distributions, note that(
ξ(t+1)/T

θ(t+1)/T

)
|θt, b1(t), B1(t), B2(t) ∼ Φ

{(
θt
θt

)
,

(
B2

1(t) +B2
2(t) b1(t)B1(t)

b1(t)B1(t) b21(t)

)}
,

and

ξ(t+1)/T |θ(t+1)/T , θt, b1(t), B1(t), B2(t) ∼ φ

(
θt/T +

B1(t)

b1(t)
(θ(t+1)/T − θt/T ), B2

2(t)

)
.

10



The full conditionals of B̃1(t) and B̃2
2(t) are in standard form:

p
(
B̃1(t)|θT , ξT , B̃T

2 , b
T
1 , {B̃1(s), s 6= t}

)
∝ p(ξ(t+1)/T |θ(t+1)/T , θt/T , B̃1(t), B̃2(t), b1(t))p(B̃1(t))

∝

φ


µB,t+

σ2B,t

b1(t)B̃
2
2(t)

(θ(t+1)/T−θt/T )(ξ(t+1)/T−θ(t+1)/T )√
1+

σ2
B,t

b21(t)B̃
2
2(t)

(θ(t+1)/T−θt/T )2
, σ2B,t

√
1 +

σ2
B,t

b21(t)B̃
2
2(t)

(θ(t+1)/T − θt/T )2
(15)

p
(
B̃2

2(t)|θT , ξT , B̃T
1 , b

T
1 , {B̃2(s), s 6= t}

)
∝ p(ξ(t+1)/T |θ(t+1)/T , θt/T , B̃1(t), B̃

2
2(t), b1(t))p(B̃

2
2(t))

∝ IG

αB,t +
1

2
, βB,t +

1

2

(
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

b1(t)
(θ(t+1)/T − θt/T )

)2
 (16)

On the other hand, we sample b1(t) with a Hamiltonian step (see Chapter 5 in Brooks et al. 2011
for an introduction to the algorithm). The motivation for using this algorithm is its capability to
exploit the information in the gradient of the full conditional of b1(t) for a faster exploration of
the parameter space, overcoming the random walk behavior of the Metropolis-Hastings step in a
highly dimensional space. Please refer to the Appendix for the details on the Hamiltonian step.
Note that, when there is no correlation (that is when B̃1(t) = 0), the sampler can be reduced to
the Gibbs algorithm in Peluso et al. (2014).

The output of the whole algorithm is a collection of samples

{θT(i), B̃
T
1(i), B̃

T
2(i), b

T
1(i)}

M
i=1,

where M is the number of iterations of the MCMC scheme. Then the proposed estimator of the
integrated variance is

1

M −M0

M∑
i=M0+1

T∑
t=1

(θ(t+1)/T,(i) − θt,(i))2 (17)

where M0 < M is the burn-in, that is the number of samples discarded at the beginning of the
Markov chain.

We simulate 500 trading days, for M = 1000, M0 = 500 and correlation -0.10, starting all
the chains from strongly biased values. The hyperparameters are for µB,t = −1.48 · 10−5, σ2B,t =

1.53 · 10−10, µb,t = 1.21 · 10−4, σ2b,t = 1.02 · 10−8, αB,t = 2.1 and βB,t = 1.99 · 10−8 for all t. Our
methodology is compared with the estimators of Kalnina and Linton (2008), Bandi and Russell
(2011) and Jacod et al. (2009) (for Jacod et al. 2009, both the adjusted and unadjusted estimators
for small sample sizes are implemented). The method of Kalnina and Linton (2008) requires the
choice of the tuning parameter K: we use K = T 2/3, since it performs well in the simulations in
Kalnina and Linton (2008) and it is what the authors use in their empirical study. For the estimator
proposed in Bandi and Russell (2011), the tuning parameters are chosen according to the rule of
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thumb proposed in Equation (26) of Bandi and Russell (2011), in simulation computed using the
true values and in the application below to Microsoft Corporation, using the corresponding values
in Table 1 of Bandi and Russell (2006). Finally, the tuning parameters of Jacod et al. (2009) are
fixed, using their notation, to kn = 51, θ = kn/

√
T and g(x) = x ∧ (1 − x), as in their simulation

studies. The results are reported in Figure 2, there is a clear advantage for our methodology both
in terms of bias and dispersion.

Figure 2: Absolute differences between estimated quadratic variations and the true latent value,
for the methods in Kalnina and Linton (2008) (KL), Bandi and Russell (2011) (BR), Jacod et al.
(2009) (JAC), the small sample adjusted estimator of Jacod et al. (2009) (JAC ADJ) and for our
methodology (LIP). The correlation between microstructure noise and financial latent return is
fixed to -0.10.

We also run the algorithm on 1 second frequency logarithmic prices of Microsoft Corporation,
for the period April 1, 2007 - June 30, 2008, and the estimated annualized quadratic variations are
reported in Figure 3.

5 Conclusions

Overwhelming evidence contrasts the independent microstructure noise assumption, in favour of
market noise correlated with increments in the efficient price, with important implications for
volatility estimation based on high frequency data (Hansen and Lunde 2006). Furthermore, such

12
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Figure 3: Integrated variance for Microsoft Corporation, estimated with the methods in Kalnina
and Linton (2008) (KL), Bandi and Russell (2011) (BR), unadjusted (JAC) and adjusted (JAC
ADJ) Jacod et al. (2009), and with our methodology (LIP), in the period April 1, 2007 - June 30,
2008.

a dependence naturally arises in common microstructure models, as discussed in depth in Diebold
and Strasser (2013). On the other hand, with the notable exceptions of Barndorff-Nielsen et al.
(2008), Kalnina and Linton (2008) and Zhang et al. (2005), several results in the literature analyze
high-frequency volatility estimation assuming that the noise process is independent of the efficient
price. In the present paper we use the theoretical framework of the conditionally Gaussian random
sequences of Liptser and Shiryayev (1972, 2001a,b), to propose a new integrated variance estimator
that is robust to the correlation between microstructure noise and latent returns. To this aim,
we adopt a Bayesian perspective and we sample a posteriori the latent price process through a
generalization of the Forward Filtering Backward Sampling algorithm of Fruwirth-Schnatter (1994)
and Carter and Kohn (1994). An application to Microsoft 1-second frequency logarithmic prices is
provided, and a simulation study shows an improved performance of our estimator in terms of bias
and dispersion, relative to the alternatives in the literature. Our methodology can be implemented
to other financial problems, for instance to generalize the framework of Barndorff-Nielsen (1997)
to normal inverse Gaussian financial logarithmic returns with measurement error, or, following the
approaches of Harvey et al. (1992) and Harvey et al. (1994), to ARCH and Stochastic Volatility
models.
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Appendix: Hamiltonian step of Section 4

The Hamiltonian step is performed through the following substeps:

1. sample the auxiliary momentum variable p{1} from Φ(0, 1),

2. propose b1(t)
∗ from the Leapfrog algorithm. In details, fix k{1} to the current value of b1(t).

For step size ε and number of iterations L:

p{1 + ε/2} = p{1} − ε

2

[
k{1} − µb,t

σ2
b,t

+
1

B̃2(t)2

(
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

k{1}
(θ(t+1)/T − θt/T )

)
B̃1(t)

k{1}2
(θ(t+1)/T − θt/T )

]

For i = 1, . . . , L− 1:

k{1 + iε} = k{1 + (i− 1)ε}+ εp{1 + (i− 1/2)ε}

p{1 + (i+ 1/2)ε} = p{1 + (i− 1/2)ε} − ε

[
k{1 + iε} − µb,t

σ2
b,t

+

1

B̃2(t)2

(
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

k{1 + iε}
(θ(t+1)/T − θt/T )

)
B̃1(t)

k{1 + iε}2
(θ(t+1)/T − θt/T )

]

Finally,

k{1 + Lε} = k{1 + (L− 1)ε}+ εp{1 + (L− 1/2)ε}

p{1 + Lε} = p{1 + (L− 1/2)ε} − ε

2

[
k{1 + Lε} − µb,t

σ2
b,t

+

1

B̃2(t)2

(
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

k{1 + Lε}
(θ(t+1)/T − θt/T )

)
B̃1(t)

k{1 + Lε}2
(θ(t+1)/T − θt/T )

]

and the proposed value is b1(t)
∗ = k{1 + Lε}.

3. Evaluate potential and kinetic energies U and Z at proposed and current values:

U(t) ∝ (b1(t)− µb,t)
2

2σ2
b,t

+
1

2B̃2(t)2

[
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

b1(t)
(θ(t+1)/T − θt/T )

]2
Z(t) =

1

2
p{1}2

U(t)∗ ∝ (b1(t)∗ − µb,t)
2

2σ2
b,t

+
1

2B̃2(t)2

[
ξ(t+1)/T − θ(t+1)/T −

B̃1(t)

b1(t)∗
(θ(t+1)/T − θt/T )

]2
Z(t)∗ =

1

2
p{1 + Lε}2
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4. Accept b1(t)
∗ with probability

min (1, exp{U(t)− U(t)∗ + Z(t)− Z(t)∗}) .
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