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Abstract

We introduce a random probability distribution which approximates, in the sense
of weak convergence, the Dirichlet process,and supports a Bayesian resampling plan
named proper Bayesian bootstrap
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from Fy. Set P, € P to be the empirical distribution of X7, ..., X* defined by
1 m
PL=—=> bx:

where ¢, indicates the point mass at z. Write H;, for the distribution of P} on (P, o(P)).
Roughly, the following definition introduces a process P such that, conditionally on P,
P e D(wkEy).

Definition 1 A random element P € P is called o Dirichlet-Multinomial process with pa-
rameters (m, w, Fy) (P € DM(m,w, Fy)) if it is a mizture of Dirichlet processes on (R, B)
with mazing distribution H), and transition measure cv,.

It follows from the definition that, if P € DM (m, w, Fy), then, for every finite measurable
partition By, ..., By of R and (y1,...,u) € R*,

Pr (P(Bl) o Py » e oy P(B‘lc) £ yf») = /,P'D(yla ces 7ykf‘a1!)(u) Bl): . &u.(u,B;ﬂ)) de(’u)

where D(y1,...,Ykloa, ..., ) denotes the distribution function of the Dirichlet distribu-
tion with parameters (aq,...,ay). With different notation, we may say that the vector
(P(B1),...,P(Bx)) has distribution
M M,
Dirichlet(w s ,w—k) /\ Multinomial (m, (Fo(Bi1), ..., Po(By))) .
Wk M My, M)

For our purposes, the introduction of the Dirichlet-Multinomial process is justified by
the following theorem.

Theorem 1 For every m > 0, let By, € P be a Dirichlet-Multinomial process with pa-
rameters (m,w, Fy). Then, when m — oo, B, weakly converges to a Dirichlet process with
parameter wkFy.

Proof. Given any finite measurable partition By,..., B of R, the distribution of the
vector (P (B1),. .., Pm(Br)) weakly converges to a Dirichlet distribution with parameters
(wPy(By), ..., wPy(By)) when m — oo. We prove this claim by showing that the moments
of any order converge to the corresponding moments of the right Dirichlet distribution. In
fact, if ry > 0,...,r > 0 are k integers,

| I (w) [(wit +11) - D(wls + 1)
E[BNBy)- - P(By)] = E ) ]
[P% (B + « BiF (B T(wi). .. T(whk) Dlw + i 7i)

where (M, ..., M) has distribution Multinomial(m, (wPy(B1), ..., wFy(By))). Therefore

lim E[PL(By)- - P(By) =
B I'(w) D(wFky(B1) + 1) T(wPy(Byg) + 1)
[(wFy(B1)) - T(why(Br)) D(w+ i, i)




since, for i = 1,...,k, m™"M; converges in probability to Py(B;).
In order to prove that 5, weakly converges to a Dirichlet process with parameter w Py it
is now enough to show that the sequence of measures induced on (P, (P)) by the processes

Fn,m=1,2,..., is tight. We will follow an argument inspired by Sethuraman and Tiwari
[1982].
Given € > 0, let K,, 7 =1,2,..., be a compact set of R such that
. ¢
PO(KT) S 7»7.5

and define

1
M = {P eP: P(Kﬁ) < —}.
7
The set i
M = ﬂ M,
r=1

is compact in P.
Fix r and note that, for every m, the random variable P,,,(K¢) has distribution

@ £2)
Beta(w—, w(1 — 9)) /\ Binomial(m, Po(KE)).
m g

Therefore E[P,,(K¢)] = Fy(Af) and this implies that

1 €
2) < rPy(K°) < £
) SrR(ED) =

Pr(P,(K¢) >

Hence, for every m,

[o0]

1 [o.9]
Pr(Pp € M%) <> (Pu(Kf) > =) <e>
=k r T==

1
2

=

and this proves that the sequence of measures induced on (P,o(P)) by the processes P,
m=1,2,...,1s tight. ¢

Remark 1 We called the process P defined above Dirichlet-Multinomial since, given any
finite measurable partition By, ..., By of R, the distribution of (P(B,),..., P(By)) is a mix-
ture of Dirichlet distributions with Multinomial weights. This process must not be confused
with the Dirichlet-Multinomial point process of Lo [Lo, 1986, Lo, 1988] whose marginal dis-
tributions are mixtures of Multinomial with Dirichlet weights.
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3 Connections with the proper Bayesian bootstrap

Let T': P — R be a measurable function and P € D(whF) with w > 0, By € P. It is often
difficult to work out analitically the distribution of T'(P), even when 7' is a simple statisti-
cal functional like the mean [Hannum.et.al., 1981, Cifarelli and Regazzini, 1990]. However,
when F; is discrete with finite support one may produce a reasonable approximation of the
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distribution of T'(F) by a Monte Carlo procedure which obtains i.i.d. samples from D(wF,).
If Fy is not discrete, we propose to approximate the distribution of T'(P) with the distribu-
tion of T'(Py,), where P, is a Dirichlet-Multinomial process with parameters (m, w, Py) and
m is large enough.

Of course, since the Continuous Mapping Theorem does not apply to every function 7,
the fact that P, weakly converges to P does not always imply that the distribution of T'(5,,)
s close to that of T'(P). However, in a previous work [Muliere and Secchi, 1996], we proved
that this is in fact the case when T belongs to a large class of linear functionals or when T
is a quantile. In the same paper we also proposed a bootstrap algorithm which produces an
approximation of the distribution of T'(P) by means of the following steps:

(1) Generate an i.i.d sample X7,..., X} from B
(2) Generate an 1.i.d. sample V,...,V,, from a Gamma(X, 1).
(3) Compute T'(F,,), where P, € P is defined by
P = <>~ Vibix;.
Vi ;

i=1 Vi =1

(4) Repeat steps (1)-(3) s times and approximate the distribution of T(P) with the em-
pirical distribution of the values T3, ..., T, generated at step (3).

The performance of this algorithm was tested with a few numerical illustrations in Muliere
and Secchi [1996] where it was compared with the approximations generated by the Pélya,
urn scheme [Blackwell and MacQueen, 1973] and with the Bayesian bootstrap procedures
described by Rubin [1981] and by Meeden [1993].

It is easily seen that the probability distribution F,, produced at step (3) is in fact a
trajectory of a Dirichlet-Multinomial process with parameters (m,w, Py). We may therefore
conclude that the previous algorithm aims at approximating the distribution of T(P) with
the distribution of T'(F,,), where B,, € DM(m,w, ), and approximates the latter by means

of the empirical distribution of the values T3,..., T, generated at step (3).
Remark 2 Step (1) is useless when F, is discrete with finite support {z;,...,2y,} and
Po(z) =pi,i=1,...,m, with 3, p; = 1. In fact, in this case one may generate at step (3)

a trajectory of P € D(wP,) by taking

1 m
B, = = = Z Vib..
i=1 Vi j—1
where V1, ..., Vi, are independent and V; has distribution Gamma(wp;, 1), i=1,...,m.

We call the algorithm (1)-(4) proper Bayesian bootstrap. To understand the reason for
this name consider the following situation. A sample X, ..., X, from a process P € D(kQy),
with & > 0 and (Jy € P, has been observed and the problem is to compute the posterior
distribution of T'(P) where T is a given statistical functional. Ferguson [1973] proved that
the posterior distribution of P is again a Dirichlet process with parameter kQp + >1 | dx,.
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In order to approximate the posterior distribution of 7(P) our algorithm generates an i.i.d.

sample X7,..., X} from
k n T st
-3 4
k+nQ0+ kE+n (ng X")

and then, in step (3), produces a trajectory of a process which, given X 1+ -2 X, is Dirichlet
with parameter (k + n)m™1 Y%, 6 x; and evaluates T with respect to this trajectory. The
algorithm is therefore a bootstrap procedure since it samples from a mixture of the empirical
distribution function generated by X,..., X, and Qo which, toghether with the weight &,
elicits the prior opinions relative to P. Because it takes into account prior opinions by means
of a proper distribution function, the procedure was termed proper.

The name proper Bayesian bootstrap also distinguishes the algorithm from the Bayesian
bootstrap of Rubin [1981] which approximates the posterior distribution of T(P) by means
of the distribution of T(Q) whith @ € D(}>", éx,). We already noticed in a previous work
[Muliere and Secchi, 1996] that there are no proper priors for P which support Rubin’s
approximation and that the proper Bayesian bootstrap essentially becomes the Bayesian
bootstrap of Rubin when % is set to 0 or n is very large.
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