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Abstract

According to Muliere, Secchi and Walker (2005) a reinforced random

process indexed by k-ary tree, we introduce a class of discrete-time stochas-

tic processes generated by interacting systeme of reinforced urns, we show

that such processes are converge in distribution and asymptotically partially

exchangeable.
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1 Introduction

According to Muliere, Secchi and Walker (2005) a reinforced random process

indexed by a k-ary tree can be described as a stochastic process represent-

ing the outcomes of drawings in a system of urns, whose compositions are

determined by the interaction of the geometrical structure (the tree) with a

Pólya-like reinforcing rule.

An effective comprehension of this model can requirer a brief review of

tree and Pólya urns.

A traditional two-color Pólya urn is characterized by an initial compo-

sition of balls of colors 0 and 1 and - most important - by a reinforcement

rule such that when a ball of given color is sampled, the composition of the

urn is updated returning that ball in the urn with another one of the same

color. In this way, the sequence of the random variables keeping track of the

successive drawings outcomes is exchangeable.

On the other hand, a tree T is a connected graph that contains no

cycles. Often a distinguished vertex φ, the root, is identified and the tree is

considered as a directed graph where the vertices go in the direction away

from φ. Given a vertex τ ∈ T , there is a unique path π(φ, τ) from φ to τ .

The number of edges in π(φ, τ) is the level number of τ and denoted |τ |.

Notice that |φ| = 0. For all the vertices in τ ∈ T but the root, there exists

a vertex σ = ←−τ called the parent of level |τ | − 1 and with an edge to τ .

Alternatively τ is said to be a child of σ and two vertices with the same
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parents are said siblings. When the number of vertices is infinite and all the

vertices have the same number of children, say k, T is an infinite k-ary tree.

In a reinforced random process indexed by a tree, the urns are allocated

in the vertices of a tree and the following sampling scheme is run: (i) all

the urns have the same initial composition of the two colors’ balls and (ii)

starting with an extraction from the urn in the root, we keep on sampling

from the urns in the successive levels in such a way that the compositions of

the children urns are reinforced by the result of the parent’s draw , conformly

with the tree’s genealogy.

This framework allows to model, moving along the different branches,

dependent sequences of random variables. Actually dependence stems from

geometry: the closer the branches, the higher the dependence between the

sequences. By the definition of de Finetti (1938) the collection of the

sequences is said partially exchangeable. Section 2 provides more details

about this process summarizing the main results of Muliere, Secchi and

Walker (2005).

Retaining these basic ideas, Section 3 substitutes the original tree with

a different structure with the purpose of introducing a closer dependence.

The new frame G is actually a recombinant binary tree in which every vertex

has two parents and two children except the root (without parents) and the

vertices along the left and right extreme branches have two children and just

one parent. Furthermore, vertices at the side of each other have a child in

common.
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The concern here is to study how the properties of the random sequences

are offected with this new geometrical structure where the updated compo-

sitions may reflect a sort of merging between the outcomes of the parents.

Section 4 tackles the problem of the asymptotic behaviour of this process

and Section 4 provides a Poisson approximation for the total number of balls

of color 1 at a given level.

2 A dichotomous reinforced process indexed by a

k-ary tree

Let us recall Muliere, Secchi and Walker (2005) process and its main prop-

erties.

Given a probability space (Ω,F , P ) and a k-ary tree T , X = {Xτ , τ ∈ T}

is defined recursively. Let a and b be two real positive numbers so that the

random variable Xφ indexed by the root is distributes Bernoulli( pφ) with

pφ = a
a+b

Xφ ∼ Bernoulli (pφ) .

For n ≥ 0, let Fn = σ {Xτ : τ ∈ T and |τ | < n} be the σ-field generated

by the random variables corresponding to the vertices of T with level less

or equal to n. Given Fn, the kn+1 random variables Xτ , with |τ | = n, are

conditionally independent and Bernoulli distributed with parameter

pτ =
a+

∑n−1
i=0 Xσi

a+ b+ n
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if π(φ, τ) = (0 = σ0, σ1, . . . , σn−1, τ). Random variables indexed by siblings

have the same conditional distribution.

As sketched in the introduction the basic interpretation is that, at each

vertex of the tree, there is a two-color (0 and 1) urn; the parameters a and

b fix the initial composition of the urn in φ, while the random variables Xτ

represents the outcome of the drawings. For a given vertex, the composition

of its k children is the same of the parent plus 1 ball of the color drawn from

the parent urn.

Before stating the proposition about the sequences of variables describing

the drawing’s outcomes, some additional definition are needed.

Let us define E be the space of the ends of T , that is the set of all

infinite sequences ε = (φ = ε0, ε1, ε2, . . . ) of vertices of a k-ary tree with the

property that ∀i ≥ 0

|εi| = i and εi =←−−εi+1.

ε can be interpreted as a path on the tree T connecting the root with a

point at a infinite level. Let T = T ∪ E and define, for ξ 6= η, ξ ∧ η as the

confluent of η and ξ to be the vertex with the highest level belonging both

to π(0, ξ) and π(0, η): A distance in T is defined as follows

d(ξ, η) =

 exp(− |ξ ∧ η|) ξ 6= η

0 otherwise

for ξ, η ∈ T . With this metric the space T is compact and totally uncon-

nected; moreover, T is a discrete subspace of T and E is a compact subspace

of T .
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An interesting matter of enquiry is the asymptotic behaviour of the pro-

cess

p = {pτ : τ ∈ T}

representing the proportion of balls of color 1 contained in the urns indexed

by the different vertices of T .

Given a generic end ε = (φ, ε1, ε2, . . . ) the sequence of random variables

{Xφ, Xε1 , Xε2 , . . . } is a 0-1 Pólya sequence; hence the sequence is exchange-

able, that is equivalent to saying that Xφ, Xε1 , Xε2 , . . . are conditionally

independent Bernoulli(pε) where

pε = lim
n→∞

pεn a.s.

Furthermore the almost sure limit pε is a random variable with distribu-

tion Beta(a, b).

The geometrical structure of the k-ary tree induces a particular kind of

dependence between the different sequences. Sequences along two different

ends ε and η have the same marginal distribution, but they are dependent.

If n = |ε ∧ η|, the subsequences Xεn+1 , Xεn+2 , . . . and Xηn+1 , Xηn+2 , . . . are

conditionally independent given Fn+1. The larger n = |ε ∧ η| is, the greater

the dependence. The following proposition summarizes some results.

Proposition 1. [Muliere, Secchi and Walker (2005)] Let ε, η ∈ E, ε 6= η

and n = |ε ∧ η|.
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1. For all x1, x2 ∈ [0, 1]

P [pε ≤ x1, pη ≤ x2]

=
n+1∑
j=0

(
n+ 1
j

)
B(a+ j, b+ n+ 1− j)

B(a, b)

2∏
i=1

Ψ(xi|a+ j, b+ n+ 1− j)

where Ψ(x|c, d) is the cumulative distribution function of a beta ran-

dom variable with parameters (c, d).

2. For x ∈ [0, 1], on a set of probability one,

P [pη ≤ x|pε] =
n+1∑
j=0

(
n+ 1
j

)
pj

ε(1− pε)(n+1−j)Ψ(x|a+ j, b+ n+ 1− j).

3. For s ≥ 0 and i0, . . . , is ∈ {0, 1},

P [Xη0 = i0, . . . , Xηs = is| pε]

=

 pξs
ε (1− pε)s+1−ξs s ≤ n

pξn
ε (1− pε)n+1−ξn B(a+ξs,b+s+a−ξs)

B(a+ξn,b+n+a−ξs))
s > n

where ξs =
∑s

r=0 ir.

Remark 1. As a consequence, of the correlation between pε and pη is

Corr(pε, pη) =
1− log d(ε, η)

a+ b+ 1− log d(ε, η)

where d is the distance on T defined above.

3 A reinforced urn process indexed by the vertices

of a recombinant binary tree

In this section we propose a new stochastic process indexed by the vertices

of a recombining binary tree G. As seen in the Introduction, G is obtained

7



by starting from the simplest k-ary tree (the binary) so that each vertex

splits into two children, and vertices at the side of each other have a child

in common. Hence it turns out that each vertex has two parents and two

children except the root (no parents) and the vertices along the left and

right extreme branches (just one parent).

The process X = {Xγ , γ ∈ G} is defined quite similarly to the process in

the previous section. Given two positive real numbers a and b and pφ = a
a+b ,

let

Xφ ∼ Bernoulli (pφ)

and Fn = σ {Xγ : γ ∈ Gand |γ| ≤ n− 1}. Furthermore, for a given vertex

τ , define the set of its ancestors A(τ) := {γ ∈ G : ∃π(φ, τ) s.t. γ ∈ π(φ, τ)}.

Assume that, given Fn the random variables Xτ with |τ | = n are condition-

ally independent such that Xτ |Fn ∼ Bernoulli(pτ )

pτ =
a+

∑
γ∈A(τ)Xγ

a+ b+ #A(τ)
. (1)

To ease the exposition every vertex τ ∈ G can be labeled by a couple

(i, n) for n = 0, 1, . . . and i = 0, . . . , n where n is the level of the node and i

increases from left to right. So the root φ is (0, 0), the two nodes at level 1

(0, 1) and (1, 1) and so on. More generally, if (i, n) is a node at level n, its

children are (i, n+ 1) (left) and (i+ 1, n+ 1) (right). Figure 1 displays the

graph G.

Relying on the usual interpretation of the Pólya urn as a Bayesian learn-

ing and forecasting process, the new geometrical structure introduces a more
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(0,0)

(0,1) (1,1)

(0,2) (1,2) (2,2)

(0,3) (1,3) (2,3) (3,3)

Figure 1: the recombining binary tree G.
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complex prediction rule where, in order to fix the predictive distribution of

the color of the ball extracted in the node τ , all the outcomes in the urns

in the set of the ancestors must be considered and not only the nodes of

particular path from φ to τ .

In determining these predictive distributions the number of balls added

as reinforcement to the initial composition is a key element. For a given

vertex τ = (i, n) ∈ G this number corresponds to the number of ancestors,

that is the cardinality of the set A(i, n). The next lemma computes this

cardinality.

Lemma 1. For n = 0, 1, . . . and i = 0, . . . , n

#A(i, n) = i(n− i) + n.

Proof. By construction

A(i, n) =
{
(k, n− j) : k = (i− j)+, . . . , i ∧ (n− j), j = 1, . . . , n

}
.

Trivially we have #A(0, n) = n and, by recurrence,

A(i, n) =
n−i⋃
k=0

{(i, i+ k)} ∪A(i− 1, n− 1).

Therefore it follows that

#A(i, n) = #A(i− 1, n− 1) + n− i+ 1

= #A(i− 2, n− 2) + 2(n− i+ 1)

= · · · = #A(0, n− i) + i(n− i+ 1)

= n− i+ i(n− i+ 1) = i(n− i) + n.
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Using the couples (i, n) as indices we can rewriteX(0,0) ∼ Bernoulli
(
p(0,0)

)
,

p(0,0) = a
a+b , and for n ≥ 0 and 0 ≤ i ≤ n:

X(i,n)|Fn ∼ Bernoulli
(
p(i,n)

)
with

p(i,n) =
a+

∑
k=(i−j)+,...,i∧(n−j), j=1,...,nX(k,n−j)

a+ b+ i(n− i) + n
. (2)

Exception, unlike the process introduced by Muliere, Secchi and Walker

(2005) a sequence of Xγ ’s obtained by starting from the root and moving

down from a parent to one of its children is not exchangeable and the cor-

responding sequence of pγ ’s is not a martingale.

Nevertheless the expected value of the proportion of balls of color 1 is

constant.

Lemma 2. For n ≥ 0 and 0 ≤ l ≤ n

E
[
p(l,n)

]
=

a

a+ b
.

Proof. We have E
[
p(0,0)

]
= a

a+b , so we proceed by induction assuming, for

i ≤ m and m ≤ n, that E
[
p(i,m)

]
= a

a+b .

Notice that E
[
p(n+1,n+1)

]
= a

a+b because the sequence
{
p(n,n)

}
n≥1

is a

Fn-martingale.
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Hence for i ≤ n fixed, we have

E
[
p(i,n+1)

]
=

[
a+

∑
k=(i−j)+,...,i∧(n+1−j), j=1,...,n+1E

[
E

(
X(k,n+1−j)

∣∣Fn

)]
a+ b+ i(n+ 1− i) + n+ 1

]

=

[
a+

∑
k=(i−j)+,...,i∧(n+1−j), j=1,...,n+1E

[
p(k,n+1−j)

]
a+ b+ i(n+ 1− i) + n+ 1

]

=

[
a+

∑
k=(i−j)+,...,i∧(n+1−j), j=1,...,n+1

a
a+b

a+ b+ i(n+ 1− i) + n+ 1

]

=
a+ a

a+b(i(n+ 1− i) + n+ 1)
a+ b+ i(n+ 1− i) + n+ 1

=
a

a+ b
.

As a consequence, we obtain the probability distribution of X(l,n).

Corollary 1. For n ≥ 0 and 0 ≤ l ≤ n,

X(l,n) ∼ Bernoulli
(

a

a+ b

)
.

Proof. For n ≥ 0 and 0 ≤ l ≤ n, let compute

E
[
eitX(l,n)

]
= E

[
E

(
eitX(l,n)

∣∣Fn

)]
= E

[
p(l,n)e

it + 1− p(l,n)

]
=

a

a+ b
eit + 1− a

a+ b
= E

[
eitU

]
with U ∼ Bernoulli

(
a

a+b

)
.

The processes Y = {Yγ , γ ∈ G} and p = {pγ , γ ∈ G} derived by X and

defined like in the previous section enjoy the property of symmetry in that

the random variables associated to vertices symmetric with respect to the

vertical axis have the same law.
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Lemma 3. For n ≥ 0 and 0 ≤ i ≤ n:

1. p(i,n)
L= p(n−i,n),

2. Y(i,n)
L= Y(n−i,n).

Proof. Recall that A(τ) is the ancestors’ set of the node τ . Note that if

τ ′ ∈ A(τ), then A(τ ′) ⊆ A(τ).

For a node τ such that |τ | = n, define P 1(τ) as the set of the parents of τ

that is the ancestors of τ of level n− 1 and, more generally, for j ∈ 1, . . . , n,

P j(τ) as the set of ancestors of τ at level n− j.

We have, for such τ with |τ | = n, A(τ) =
⋃n

j=1 P
j(τ) and also, for

k = 1, . . . , n− 1 the recursive relation
⋃

η∈P k(τ)A(η) =
⋃n

j=k+1 P
k(τ).

Now let s : G→ G, s((i, n)) = (n− i, n) be the function relating a node

to its symmetric with respect to the vertical symmetry axis of G. Notice

that A(n− i, n) = {s(τ), τ ∈ A(i, n)}.

By the definition of the process in equation (1), we have, for fixed τ ∈ G

and given x and xη, η ∈ A(τ),

P [Xτ = x|Xη = xη, η ∈ A(τ)] =
(

a+
P

η∈A(τ) xη

a+b+#A(τ)

)x (
1− a+

P
η∈A(τ) xη

a+b+#A(τ)

)1−x

P
[
Xs(τ) = x

∣∣Xs(η) = xη, η ∈ A(τ)
]

=
(

a+
P

η∈A(τ) xη

a+b+#A(τ)

)x (
1− a+

P
η∈A(τ) xη

a+b+#A(τ)

)1−x

so that

P [Xτ = x|Xη = xη, η ∈ A(τ)] = P
[
Xs(τ) = x

∣∣Xs(η) = xη, η ∈ A(τ)
]
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Let consider a given node (i, n) and fix {xτ , τ ∈ A(i, n)}. We have

P [Xτ = xτ , τ ∈ A(i, n)] =
n−1∏
j=1

∏
τ∈P j(i,n)

P [Xτ = xτ |Xη = xη, η ∈ A(τ)]P [Xφ = xφ]

=
n−1∏
j=1

∏
τ∈P j(i,n)

P
[
Xs(τ) = xτ

∣∣Xs(η) = xη, η ∈ A(τ)
]
P

[
Xs(φ) = xφ

]
= P

[
Xs(τ) = xτ , τ ∈ A(i, n)

]
(the xη’s are the different xτ ’s corresponding to the different subsets of

the above set).

So the random vectors (Xτ , τ ∈ A(i, n)) and (Xτ , τ ∈ A(n − i, n))

have the same probability distribution. As Y(i,n) = a +
∑

τ∈A(i,n)Xτ and

Y(n−i,n) = a+
∑

τ∈A(n−i,n)Xτ , it turns out that Y(i,n) and Y(n−i,n) have the

same law too. Analogously we obtain the result for p(i,n) and p(n−i,n).

This lemma is very useful with respect to the study of the convergence

of the process in that it allows to focus just on the sequences of the type{
p(i,n)

}
n

omitting to consider the symmetric
{
p(n−i,n)

}
n
.

4 Some asymptotic properties of the process

Failing the martingale properties of the sequence of proportions
{
p(i,n)

}
n
,

the asymptotic behaviour of the new stochastic process is more difficult to

describe. This section gives some results.
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For i ≥ 0 , we define the processes
{
ρ(i,n)

}
n

such that

ρ(i,n) =


p(n,n) if n < i

p(i,n) if n ≥ i
(3)

We note that for a fixed i ≥ 0 and n < i the processes
{
ρ(i,n)

}
n

corre-

spond to Pólya urn processes.

Theorem 1. For fixed i ≥ 0, there exists ϕi : N→ N, such that ϕi(n)↗∞

and the process
{
ρ(i,ϕi(n))

}
n≥0

converges a.s. to the random variable Θ ∼

Beta(a, b).

Proof. We know that for i = 0, the process
{
ρ(0,n)

}
n

is a Pólya sequence,

therefore ρ(0,n) converge almost surely to the random variable Θ with

Θ ∼ Beta(a, b).

Since, for fixed i ≥ 0 the sequence
{
ρ(i,n)

}
n≥0

is bounded, there exists

ϕi : N → N, such that ϕi(n) ↗ ∞, and the process
{
ρϕi(n)

}
n≥0

converges

almost surely to the random variable Li ∈ [0, 1].

Now, we show that the limit is always Θ with Θ ∼ Beta(a, b).
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For i = 1, applying Theorem 2.13 in Hall and Heyde (1980) we get

{
ω : lim

n→+∞
ρ(1,ϕ1(n)) = L1 a.s

}
⊆

ω : lim
n→+∞

1
n

n∑
j=0

p(1,ϕ1(j)) = L1 a.s.


⊆

ω : lim
n→+∞

1
n

n∑
j=0

X(1,ϕ1(j)) = L1 a.s.


⊆

ω : lim
n→+∞

1
ϕ1(n)

ϕ1(n)∑
j=0

X(1,ϕ1(j)) = L1 a.s.


⊆

ω : lim
n→+∞

1
ϕ1(n)

ϕ1(n)∑
j=0

X(1,j) = L1 a.s.

 .

We have

ρ(1,ϕ1(n)) =
a+

∑ϕ1(n)
j=1 X(1,j) +

∑ϕ1(n)
j=0 X(0,j)

a+ b+ 2ϕ1(n)− 1

Therefore

L1 = lim
n→+∞

ρ(1,ϕ1(n)) = lim
n→+∞

a+
∑ϕ1(n)

j=1 X(1,j) +
∑ϕ1(n)

j=0 Xυ(0,j)

a+ b+ 2ϕ1(n)− 1

= lim
n→+∞

ϕ1(n)
a+ b+ 2ϕ1(n)− 1

{
a+

∑ϕ1(n)
j=1 X(1,j)

ϕ1(n)
+

∑ϕ1(n)
j=0 X(0,j)

ϕ1(n)

}

=
L1 + Θ

2
a.s.

We conclude that Θ = L1 almost surely.
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In the general case, by similar computation we have that

{
ω : lim

n→+∞
ρ(i,ϕi(n)) = Li a.s

}
⊆

ω : lim
n→+∞

1
n

n∑
j=0

p(i,ϕi(j) = Li a.s.


⊆

ω : lim
n→+∞

1
n

n∑
j=0

X(i,ϕi(j)) = Li a.s.


⊆

ω : lim
n→+∞

1
ϕi(n)

ϕi(n)∑
j=0

X(i,ϕi(j)) = Li a.s.


⊆

ω : lim
n→+∞

1
ϕi(n)

ϕi(n)∑
j=0

X(i,j) = Li a.s.

 .

and

pυ(i,ϕi(n)) =

∑ϕi(n)−i
k=0 X(0,k) +

∑ϕi(n)−i+1
k=0 X(1,k) + · · ·+

∑ϕi(n)−1
k=0 X(i,k)

a+ b+ i(ϕi(n)− i) + ϕi(n)

=
ϕi(n)

a+ b+ i(ϕi(n)− i) + ϕi(n)
{
∑ϕi(n)−i

k=0 X(0,k)

ϕi(n)
+

∑ϕi(n)−i+1
k=0 X(1,k)

ϕi(n)

+ · · ·+
∑ϕi(n)−1

k=0 X(i,k)

ϕi(n)
}

So we conclude by induction that
Li = Li+iLi−1

i+1 a.s.

L0 = Θ a.s.

(4)

Remark 2. We note that for all ϕi : N −→ N, such that ϕi(n)↗∞ and the

process
{
ρ(i,ϕi(n))

}
n≥0

converges a.s,
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we have always lim
n→∞

ρ(i,ϕi(n)) = Θ with Θ ∼ Beta(a, b), so by the monotone

convergence’s theorem, for all fixed k

lim
n→∞

E
[
ρk
(i,ϕi(n))

]
= E

[
Θk

]
(5)

Now,theorem 1 can be used to prove the convergence in law of the overall

sequence
{
ρ(j,n)

}
n
.

Theorem 2. For fixed j ≥ 0

ρ(j,n)
L−→

n→+∞
Θ ∼ Beta(a, b). (6)

Proof. Let ψ(j,n) be the characteristic function of ρ(j,n). Then we have

ψ(j,n)(t) = E
[
eitρ(j,n)

]
=

∞∑
k=0

(it)kE
[
ρk
(j,n)

]
k!

Now, for fixed i ≥ 0 and k ≥ 0, we have

E
[
ρk
(i,n)

]
−→

n→+∞
E

[
Θk

]
(7)

with Θ ∼ Beta(a, b).

In fact, for fixed i ≥ 0, ρ(i,n) ∈ [0, 1], and therefore, for all k ≥ 0,

E[ρk
(i,n)] ∈ [0, 1], so that lim

n→+∞
E[ρk

(i,n)] exists and is finite.

Now, we show that this limit is unique.

We suppose that lim
n→+∞

E[ρk
(i,n)] = `1, and lim

n→+∞
E[ρk

(i,n)] = `2.
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By Remark 2 
`1 = lim

n→+∞
E[ρk

(i,n)] = E
[
Θk

]
`2 = lim

n→+∞
E[ρk

(i,n)] = E
[
Θk

] (8)

We conclude that

E
[
ρk
(i,n)

]
−→

n→+∞
E

[
Θk

]
(9)

By the monotone convergence theorem

lim
n−→∞

ψ(j,n)(t) = lim
n−→∞

∞∑
k=0

(it)kE
[
ρk
(j,n)

]
k!

=
∞∑

k=0

(it)k

k!
lim

n−→∞
E

[
ρk
(j,n)

]
=

∞∑
k=0

(it)k

k!
E

[
Θk

]
= E

[ ∞∑
k=0

(itΘ)k

k!

]
= E

[
eitΘ

]
This shows that the distribution of the limiting distribution of ρ(j,n) is

Beta(a, b).

Theorem 1 implies also that the subsequences
{
X(i,φi(n))

}
n

are asymp-

totically exchangeable. Before proving this fact, we recall the definition of

asymptotic exchangeability.

Definition 1. An infinite sequence (V1, V2, · · · ) is called asymptotically

exchangeable if

(Vj+1, Vj+2, · · · )
d= (Z1, Z2, · · · ) as j −→∞ (10)
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with (Zn, n > 1) an infinite exchangeable sequence.

Now we can state the following

Theorem 3. The sequence
{
X(i,ϕi(n)

}
n

is asymptotically exchangeable.

Proof. For a fixed i ≥ 0 , the conditional distribution of X(i,ϕi(n)+1) given

Fϕi(n) = σ (Xτ , |σ| < ϕi(n)) is a Bernouilli
(
p(i,ϕi(n))

)
; we have seen that,

as n →∞, it converges with probability one to a Bernouilli (Θ) with Θ ∼

Beta(a, b).

So

P
(
X(i,ϕi(n)) = 1 | Fϕi(n)

)
= p(i,ϕi(n))

a.s−→ Θ

But

P
(
X(i,ϕi(n)) = 1 | Gi

n

)
= E

(
X(i,ϕi(n)) = 1 | Gi

n

)
and Hunt’s lemma (see Hunt (1966) or Meyer (1969)) entails

E
(
X(i,ϕi(n)) = 1 | Gi

n

) a.s.−→ E
(
Θ | Gi

∞
)

= Mi.

with G(i)
∞ =

∞
∨

n=1
Gi

n, Gi
n = σ(X(i,ϕi(j)), 0 ≤ j ≤ n) and Θ ∼ beta(a, b).

Finally by virtue of Lemma 8.2 in Aldous (1985) we get the asymptotic

exchangeability of the subsequence of interest.

5 Poisson approximation

Finally we provide a conditional Poisson approximation for the overall num-

ber of balls of color 1 at level n given all the history of the process up to

level n− 1.
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Proposition 2. Let Hn =
∑n

i=0X(i,n) be the number of balls of color 1

sampled at level n and Wn a Poisson random variable with parameter λn =∑n
i=0 p(i,n) for p(i,n) defined as in (2).

Then for any A,

|P (Hn ∈ A| Fn)− P (Ln ∈ A)| ≤
n∑

i=0

p2
(i,n).

Proof. We recall the definition of total variation distance between two ran-

dom variables is given by :

dTV (X,Y ) =
∑

k

|P (X = k)− P (Y = k)|

= 2 sup
A⊆N
|P (X ∈ A)− P (Y ∈ A)| (11)

So we can compute,

dTV (Hn,Wn) =
∑

k

|P (Hn = k)− P (Wn = k)| ≤
n∑

i=0

∑
k

∣∣P (
X(i,n) = k

)
− P (Wi,n = k)

∣∣
=

n∑
i=0

∣∣1− p(i,n) − ep(i,n)
∣∣ +

∣∣pv(i,n) − p(i,n)e
−p(i,n)

∣∣ +
∑
k≥2

P (Wi,n = k)


=

n∑
i=0

(∣∣1− p(i,n) − e−p(i,n)
∣∣ +

∣∣p(i,n) − pv(i,n)e
−p(i,n)

∣∣ + 1− e−p(i,n)(1 + p(i,n))
)

(12)

where Wi,n’s are independent Poisson random variables with parameters

p(i,n).
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But, since, for x ≥ 0, 1− x ≤ e−x ≤ 1, we obtain by (12

dTV (Hn,Wn) =
n∑

i=0

(
−1 + p(i,n) + e−p(i,n) + pv(i,n) − pv(i,n)e

−p(i,n) + 1

−e−p(i,n) − e−pv(i,n) − p(i,n)e
−p(i,n)

)
=

n∑
i=0

(
2p(i,n) − 2p(i,n)e

p(i,n)
)

= 2
n∑

i=0

(
pv(i,n)(1− ep(i,n))

)
≤ 2

n∑
i=0

p2
(i,n).

Hence using (11) we conclude that:

sup
A⊆N
|P (Hn ∈ A)− P (Ln ∈ A)| ≤

∑n
i=0 p

2
(i,n).
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