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Abstract
In this paper we study the estimation of the renewal function in a Bayesian nonparametric approach,
essentially in a Bayesian predictive perspective. After introducing the prior (a Dirichlet Drocess), a proper
bootstrap scheme that approximates the posterior law of the renewal function is studied, and its convergence
properties are proved. Then, large-sample results (consistency and Bernstein-von Mises theorem) are
obtained.
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1 Introduction and motivation

Renewal processes play a key role in applications of stochastic processes, due to their widespread
use in reliability, control processes, telecommunications networks, such as high-speed packed-
switched networks. Generally speaking, renewal processes come into force when one is interested
in modelling events that happen at random times. An important example is the Internet traffic.
Measurement equipments usually record the number of events (for instance, opening of web pages,
requested of sending IP packets, etc.) in time intervals, as well as times between consecutive
events. Furthermore, often complex stochastic models can be decomposed into regenerative cycles,
each of them being equivalent to a renewal process; see Resnick (1989).

A key tool in studying and using renewal processes is the renewal function, since it allows one
to evaluate the expectation and variance (as well as many other characteristics) of the number of
arrivals of the relevant events in time intervals; cfr. Gnedenko and Kovalenko (1992).

Let (Xn; m > 1) be a sequence of non-negative, exchangeable r.v.s. From de Finetti’s
representation theorem (de Finetti (1937)), there exists a random distribution function F,
conditionally on which the r.v.s X,,, n > 1, are independent and identically distributed (4.i.d.)
for F'. In symbols:

P(x)= Pr(X; €< a|F).

In the sequel, we assume that F'(0~) = 0, F(0) < 1, a.s.. In our setting, the r.v.s X;s can be
though as random times between consecutive events.

The renewal counting process N(t); ¢ > 0 counts the number of events before time ¢, i.e.:

N(t) =" Ijo,q(Sk)

k=1
“where S = Xy + -+ + X}.
The expectation of N(t) (given F) is the renewal function (L)

M(t) = E[Zf[o,ﬂ(sk) F
k=1

= ) Pr(S, <t|F)
k=1
oo

= Y FR@). (1)

k=1
The symbol * denotes here the convolution operator, defined as

t
FO(t) = Iio,0) (), F*'(8) = F(t), F(t) = (F « F) (2) =/0 F(t —y)dF(y),

and, in general,

F*¥8) = (F« F*0 (1), k> 1.



The relationship {N(¢) < k} & {S; > t} allow limit properties of (N(); t > 1) to be
determined from the behaviour of (X;; i > 1). Note further that the event N (t) < k depends
only on Xy, ..., X}.

The problem we deal with is the estimation of the r.f. (1), on the basis of sample data.
In classical statistics, this problem has been studied by several authors, who mainly obtained
asymptotic results; see Frees (1986), Harel et al. (1995), Griibel and Pitts (1993), and references
therein.

In this paper we study the estimation of the r.f. in a Bayesian nonparametric approach.
Although our approach is nonparametric, the use of a prior distribution allows one to convey in
the estimation process all relevant non-sample information.

The paper is organized as follows. In Section 2 the prior and posterior distributions are
discussed, and the relationship between renewal function and predictive approach is described.
Section 3 is devoted to study a bootstrap scheme that approximates the posterior law of the
renewal function. In Section 4, some large-sample results are obtained. Finally, a few suggestions
on their use are provided in the conclusions.

2 Prior and posterior distributions

As already said, the exchangeability of r.v.s X;s implies that, via de Finetti’s representation
theorem, there exists a probability measure such that the joint law of Xy, ..., X,,, for any n, can

be written as
PrXi <oy, ..., Xp < 2,) = [ {HF(mi)} u(dF)
i=1

where 1 is the de Finetti (or prior) measure. From a predictive point of view, A fundamental
problem consists in computing the conditional probabilities:

Pr(Xn41 < z|Xy, ..., X,)

that is, in our case, the probability law of the next random time, given the “past times”
X1, ..., Xp.
The exchangeability assumption implies:

P‘T‘(Xn+1 Slel, ,Xn):E[F(x) |X1,...,Xn} (2)

In the predictive context, the renewal function does have a concrete, important meaning.
Imagine to start counting time just after the nth event; in other words, the time axis is rescaled
so that time 0 actually coincides with X; 4+ --- + X,,. An Important quantity is the expected
number of events in [0, #], conditionally on the knowledge of X, ... » Xn. In view of (2) and (1),



this quantity is equal to
co
E[N(t) lea T Xn] = ZE [I[U,t](Xn+l e wa Xn-HcH
k=1

o0
= ZP?‘(XnH Foot Xogr <Xy, o, X)
k=1

= EB[M(t)|Xy, -, X,

- E[ZOO:F*k(t)

k=1

X1,---,XnJ ' (3)

Relationship (3) shows that the renewal function M (t) plays a central role in predicting the
number of events in the (rescaled) time interval [0, ¢]. The renewal function plays a central role also
in predicting the number of events in different intervals. Denote by N(t,t+h) =N (t+h)+ N ()
the number of events in (¢, ¢ + h]. From (3) it follows that:

E[N(t, t+h) || X, vy Xn] = E[M(t + h) —M(t) | Xq, -, Xil.

The problem is how to select the prior. The Bayesian approach to the evaluation of the
conditional probability (2) requires to elicit a prior distribution for on the space of distribution
function, and then to use the posterior distribution for F for the computation of the expected
value appearing in (2).

An interesting prior for F was introduced by Ferguson (1973) in a fundamental paper an
Bayesian approach to nonparametric statistics. We will indicate this prior, called the Dirichlet
process, by D(a, 7), where ¢ > 0 is 2 positive number and 7 is a proper d.f. on [0, cc). The
d.f. 7 can be interpreted as a prior guess at F, whereas q is the “strength” of this guess. For the
definition of the Dirichlet process and a review of its main features, we refer to Ferguson (1973),
Ferguson (1974).

Denote by

T

1
Fo(z) = - Z Iix,<z)

i=1

the empirical distribution function (e.d.f) based on X L, " +, Xn. It is possible to show (cfr.
Regazzini (1978), Lo (1991)) that for every n =1

7(z) + —— F, () (4)

ﬁn(x):PT(XnHSﬂXl’""X"):n—f—a n+a "

with a > 0 and 7(-) a distribution function, if and only if F is a Dirichlet process D(a, ).
Relationship (3) requires the knowledge of the posterior law of M(¢), given X, s oy g

However, it cannot be explicitly obtained. In fact, as well known, the posterior law of F, given

Xy~ Xy, is still & Dirichlet process D((n +a), ﬁn) However, neither the posterior law of F*k,



k > 2, nor the posterior law of M (t) = 3 F*%(t) can be written in & closed form. This suggests
to resort to some approximation of the posterior law of M (¢).

In principle, it is possible to define a prior directly on M(t); ¢ > 0. However, this is a very
difficult task, because of the properties of M(t), that of course should be incorporated into such
a prior. First of all, the elementary renewal theorem (cfr. Resnick ( 1989)) implies that

t

(t)fvm ast — oo (5)

ie. M(t) is “asymptotically linear” . Furthermore, from the Blackwell’s theorem (cfr. Resnick
(1989)) it follows that

M(t+h)— M) h
; NW ast — co (6)

for every positive k. Features such as (5) and (6) are clearly difficult to be incorporated into a
prior. Hence, it is considerably more realistic to construct a prior for 77, the d.f. of times between
consecutive events. This provides rather a strong motivation to resort to some approximation
scheme for the posterior distribution of M(t). In the sequel, we suggest some ideas based on a
proper bootstrap scheme.

3 Proper bootstrap approximation

Rubin’s bootstrap (cfr. Rubin (1981)) provides a simple way for approximating the posterior law
of functional of the Dirichlet process, when a is going to zero. In other words, it essentially ignores
the prior law. Of course, it is useful (see Lo (1987)) when the sample size n is large. However,
1t is of not so great importance if either a is not so small comparatively to T, Or 7 is a proper
distribution function.

We present here a technique for approximating the posterior law of J/ (). It is based on a
proposal by Muliere and Secchi (1996), that we consider here in slightly more general setting. In
more detail, the basic ideas of the so-called “proper Bayesian bootstrap” are developed in the
renewal processes setting.

"The starting point consists in drawing a sample X, = (X 445 50 X ) of size m from E, (4),
and in taking the corresponding e.d.f.

-~ 1 -
Fr(z) = EZI(ES:G) (7)
i=1

This corresponds to elicit a prior opinion about F by a proper distribution 7, and a positive
number a measuring our faith on such a “guess”.
Next, let

o0}

M (t) = 3" Fri(t) (8)

k=1
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be the r.f. corresponding to (7). The key idea in Muliere and Secchi (1996) is that, conditionally
on Xy, ..., Xn, the probability law of the random function Fpo(-) (which is a mixture of Dirichlet
processes with finite support) approximates the (posterior) probability law of the random function
F(). As a consequence, the probability law of M, (t) (8) should approximate the posterior law
of M(t).

The main result of the present section is Proposition 1, where the above claimed convergence
is proved. We begin by a couple of lemmas, that used to prove Proposition 1.

Lemma 1 Assume 7 has support [0, o). Conditionally on X1, .. ., Xn, as m increases:

(z) F;f(:r) converges weakly to F**(zx) for every k > 1 and z >0;
(i1) K>1, EkSKTﬁ;f(m) converges weakly to 35, F*(z), for every K > 1 and % >0.

Proof From our assumption on , conditionally on X7, ..., X, F(t) is continuous at the point
t with probability 1. For this reason, in sequel of the proof we will tacitely admit that ¢ is a
continuity point for F.

Let

d(u) = ./000 gPuE dF(z), ¢,.(u) = ’/000 gils dF o (z), m>1

be the characteristic functions of F(-), Fp(-), respectively. In Muliere and Secchi (2003) it is
shown that, conditionally on X, ..., Xn, the sequence of random functions (Fu(-); m > 1)
converges weakly to F(-) in the Skorokhod topology on DI0, co]. From the continuous mapping
theorem (cfr. Billingsley (1968)), and using the uniform continuity of characteristic functions,
the sequence of random functions (b (-); m > 1) converges weakly to #(-) as m — oco. Weak
convergence takes place in C[—o0, +0o] equipped by the sup-norm. In symbols: ¢,,(-) 3 ¢(-) as
m — 00. In the same way, it can be shown that:

m()"g = ng()’c asm—o00, k> 1

K
m()k Z¢()k as m — oo, K 2 1
k=1

I &l

1=

o

K
k=1

in C[—o00, +0] endowed by the sup-norm.
From the Skorokhod representation theorem (cfr.  Pollard (1984)) there exist, on an
appropriate probability space, random functions aﬁa( ), (-) such that:

(a) % () 2 #F (), afn( ) 4 5:;(), m > 1, where < denotes equality in distribution;
(0) 8P ameneros qgm(’u)k — a(u)k X 0asm— .

Denote now by F* (t), ﬁ;k (t) the inverse Fourier-Stieltjes transforms of o, @m respectively.

By well known properties of the characteristic functions (cfr. Lukacs (1960), pp. 35-38), and
recalling that ' may be assumed continuous at z, 1t is possible to argue that



(c) F*(t) £ Fk(r), Feb@) L F* ), m>1, k> 1,

(
(d) Fxk(

t) 43 F*k(t) as m — oo, for every k > 1.

From (d) it is possible to conclude that F*k( ) tends also in distribution to ﬁ(t) as m — oo,
7

and using (c) conclusion (i) follows. Statement (i) can be shown in a similar way.q

Lemma 2 The inequality
F*(t) < F(t)*
holds for every k > 1.

Proof In view of the monotonicity of F, we have

P = [ Pe-yari)
0
< F@Ft-1(

from which (9) easily follows.n

Proposition 1 Assume that the support of 7 is [0, 00). Then, conditionally on X, ..

M, (t) converges in distribution to M(t), as m goes to infinity.

Proof Let K be a positive integer. From Lemma 2 we have

>, R < N Pt
k=K+1 k=K+1

_ F@¥

- 1-F(y)

and since F'(t) < 1 with probability 1, we obtain:

o0
Z F*1) 20 as K — co.
k=K+1

.

(10)

Let z be a continuity point of the (posterior) d.f of M (t), so that also the d.f. of F** (t) is

continuous at z.

Conditionally on X, = (X1, ..., X,,), from Lemma 1 we obtain:

(Z“”"“ <z ) < Pr(z_*k Xn)

K
— Pr( F*k(t)gx Xﬂ) as m — 0o
k=1

7

(11)



for any K > 1.
Take now positive ¢, e. By (10), there exists K = K (4, €) such that

FEE (1) €
— > < =
PT(l—F(t)— an)_Z (12)
Hence, from Lemma 1, for every m “large enough”, the inequality
— K
F_o(t
Pr m_() >0 X, ) <e (13)
L= Fm(t)

oo K o0
PT(ZF;‘:@)@G xﬂ) = Pr (Zﬁ,’f(ﬁ)g% N TR Xn)
k=1 k=1 k=K+1
K —xK
> P F_o(t)<z— n_ X
T(; m()_iE 1= Fonld) n)
K —*x K —* K
>P F_ ()<g-—--—T , e <d§|X
2P\ E IO <e - TR T e <O
K —xK
—x*k F t
> P 1) < ~5, m_ <§ X
T g M) ST lﬁFm(t) n)

v

00
i -tk
lal‘gtli}loIéfPT (3 mt) <z Xn)

‘ oo K
lim sup Pr (Z_F;f(t) <z Xn) < Pr (ZF*k(t) oo b

K
Pr (ZF*k(t) <=z

k=1

Xn)—e

Proposition 1 essentially tells that (i) the approximation to the posterior law of M (t)
provided by the proper bootstrap works for every fized n, and (1) the larger m, the better
the approximation.

and by letting K — oo, €, § — 0, the proposition in proved.

From a practical point of view, the actual distribution of M (t) is difficult to be obtained
exactly.  For this reason, we describe a simple algorithm providing a useful numerical
approximation.



1. Generate a sample X, = (X1, ..., Xm) of size m from F, (4)

2. Compute the e.d.f. F,, (7);

1

3. Compute the renewal function Mo (t) (8);

4. Repeat steps 1-3 r times, in order to obtain r values:
My 1(2), ooy M, o (2) (15)

The e.d.f. computed on the basis of (15):
1 r
. 3 _
ety == 5 I, 020y
=1

provides an approximation of Pr(M(t) < z|X,). The algorithm is essentially a bootstrap
procedure, since it samples from a mixture of the e.d.f generated by X', and 7, that, together with
the weight a, elicits the prior opinion on F. It is substantially different from Rubin’s bootstrap
scheme, because in Rubin’s bootstrap 7 and a do not play any role.

From the Glivenko-Cantell; theorem, as r increases we obtain:

sup | B, . (z) — Pr(Mn(t) < 1X2) 20 asr — oo (16)

for every fixed m. By combining (16) and Proposition 1, it easy to obtain the following further
result.

Proposition 2 Assume that r goes to co as m does. Then:
(@) *3 Pr(M(t) < o|X,,)

as m — 00, for every point z at which Pr(M(t) < z|X,) is continuous.

4 Consistency and Bernstein-von Mises theorem for the
posterior distribution

The goal of the present section is to study the large sample behaviour of the posterior law of M ().
From a theoretical viewpoint, this kind of study is of interest because in Bayesian nonparametrics
there are many cases where the asymptotic normality of the posterior (7.e. Bernstein-von Mises
theorem) does not hold. See, for instance, the paper Freedman (1999) for negative results, and
by Kim and Lee (2004) for positive results; seen also Ghosh and Ramamoorthi (2003).

From a practical point of view, on the other hand, Bernstein-von Mises theorem provides a
rationale basis to approximate the posterior law of quantities of interest, and to construct Bayesian
confidence regions.



As a by-product of our results, we will also prove the consistency of the posterior distribution
of M(-). The importance of consistency as a “validation” of Bayesian nonparametric procedures
Is stressed, for instance in Wasserman (1998), Ghosh and Ramamoorthi (2003).

The regularity conditions needed are listed below.

Al. There exists a “true” (population) d.f. Fy, such that (Xn; n > 1) are independent and
identically distributed (s.i. d.) with common d.f. Fy. This essentially means that the sequence of
observables (X,; n > 1) lives on the probability space (IR, B (IR)°°, P§°), with

Py(B) = /; dFy(), B € B(R)

and F§° is the product measure generated by P,.
A2. The d.f. Fy is continuous.

In the sequel, we will denote by
oo
My(t) = 3y " Fpk)
k=1

the “true” population renewal function, and by Hn (t) the quantity
o0}
Mn(t) = Z Fv'::k(t)
k=1
where Fvn(w) = E[F(z)|X1, .-+, X,]. Note that ﬁn(t) is a proper renewal function, and that
ﬁn{t) = E[M(t) |X11 Tt Xn]

In the sequel, we will essentially find the large sample posterior law of \/n(M(t) — ﬂn(y))
Proposition 5 is essentially the “Bayesian counterpart” of asymptotic results obtained by other
authors in classical statistics: Griibel and Pitts (1993), Harel et al. (1995). We consider here weak
convergence in the space D0, b] of cadlag functions equipped by the Skorokhod metric, with finite
b. A different metric, that allows one to study weak convergence in the whole space D0, ], is
in Griibel and Pitts (1993).

The approach we use is based on the so-called “Hungarian constructions” (Komlés et al.
(1975)), that provide an almost sure representation of the posterior law of the stochastic process
M(-). The idea of using Hungarian constructions in Bayesian asymptotics goes back to Lo
(1987), who obtained the large sample distribution of the “Bayesian bootstrapped” version of
F(-). Hungarian constructions are also used in Conti (2004) to study the limiting distribution of
the quantile process in a Bayesian setting. The reason why the Hungarian construction approach
is useful in our problem is that it allows one to choose in a Very convenient way the probability
space where the quantile process lives.

A Kiefer process (K (5,8); 0<s<1; ¢ 2 0) is a two-parameter Gaussian process with mean
function and covariance kernel given by

E[K (s, t)] =0, E[K (s1, t1) K (55, t2)] = (min(sy, s5) — $182) min(ty, ¢,),

10



m——

respectively. Clearly, for every fixed t > 0 the process (t~1/2K (s, £); 0 < 5 < 1) is a Brownian
bridge.

Proposition 3 Assume that the support of m is [0, 0o). Under Al, A2, there exist a a process
ﬁ() and a Kiefer process K (-,-), defined on an appropriate probability space, such that
(1) ﬁ() 4 F(:), conditionally to Xy, ..., X, for every n > 1.

(i) sup, |VA(F(2) ~ Fo(e) = JeK (Fo(e), m)| = O ( ((emtosmZfoam ) 5 pge.

Proof See Lo (1987).q

The interest of Proposition 4 is twofold. On one hand, it establishes the consistency of the
posterior for M (). On the other hand, it will be used in proving Proposition 5.

Denote now by M (t) the renewal function

00
=3
k=1

In view of (z) in Proposition 3, we clearly have M{(t (#] = L Mt (t) conditionally to X7, ..., Xn, for
every n > 1. Hence, to study the large sample behaviour of Vvn(M(:) — n()), it is enough to
study the limit law of \/n(M ( ) — M, (-)) as n increases.

Proposition 4 Let b > 0 such that Fo(b) < 1. If the support of 7 is [0, o) and assumptions Al,
A2 are fulfilled, then we have:

lim P(sup |M(t)—Mg(t)J>e|Xn) =1 Ve>0. (17)

nILIEoP (Osslggb M(t) —Mn(t)‘ > E‘Xn) =1 Ve>0. (18)

Proof First of all, after some algebra it is not difficult to see that the inequality

sup |F**(z) — } {ZFg b) Fk—i- 15)} sup [F(z) — Fy(z)| (19)

0<z<h 0<z<b

holds for every & > 1. From (19) it is then possible to obtain the following relationship:

- = *k Y v xk SC
S M)~ Ma(a)| = o kZ:l(F (z) — Fg*(z))
oo k—1
< O Y REGYFEEY s |F(z) — Fy(z)|
k=1 j=0 Lt

= 12 2 BOYFOTL sup F) - Ry)

720 k>j+1 05E<

11



= { ﬂﬁ@)( 15 qukfl)} sup [F(z) — Fy(z)
7=0 =0

Fasgead 0<z<h

= M00) =55 8, 1P(e) - (o). (20)

From well-known results on the consistency of the Dirichlet process (see, for instance, Ghosh

and Ramamoorthi (2003), p. 123) we have further

lim P( sup |F(z) — Fy(z)] >e|Xn) =1Ve>0 (21)
ieg 0<z<oo

and from (21) and (20) result (17) follows. Relationship (18) is shown in a similar way.q

Proposition 5 Let b > 0 such that Fo(b) < 1. Under assumptions Al, A2, there ezists a set of
sequences (X,; n > 1) of observables having P§°-probability 1, such that the sequence of stochastic
processes (v/n{M(t) — Hn(t)); 0<t<b),n>1, conditionally on X15 .oy Xn, converges weakly
in D[0, b] to a Gaussian random process having the form

Gl) =Yk [ BUR(-y)drt-i() 22)
k=1 40

where B(-) is a standard Brownian bridge.

Proof As already said, it is enough to show that V(M () - jffn()) converges weakly to the
Gaussian process (22). For the sake of simplicity, in the sequel we will use the following notation:

Wa(z) = vn(F(z) - Fy(z))
1

Bals) = Z-K(Fi(a), )
In the first place, it is not difficult to see that
k
F¥ () = Bk @) = 3 { (B « Fgk)(o) — (P91 Byl (23)
=1

From (23) the relationship

: 00 k
VR = Mo(t) = SV {(B ¢ Fytoiy(a) — (Bt B 51
k=1 J=1
ook
= XX (BB W) (@)
k=1 j=1
ok
+ZZ ((ﬁ*ﬂ_l F*J—l) * F*k~3 5 Wn) (m)
k=1 j=1
= Ain(z) + Ay (z) (24)



follows, where

oo k
An(@) = O3 (BBt e w,) ()
k=1j=1
co k
Amiz) = 33 (P97 = Bty o, (1)

=
Il

1j5=1

.
Il

We now show that Ay, is asymptotically negligible. To this purpose, we observe that

co k
sup |Agn(z)] = su P91 F-1y sy Fi o) (2
502, [42n(2)] DSbekZ:l;(( ) ») (2)
) o o ‘
= sup ZF*J’I Fr-1y ZF;:’“_J * Wy | ()
Osz<h |\ j=1 k=3
= sup ( *M * W) (z )J
0<z<b
< M) sup 1M 2) = Mn(x)| sup |Wa(a)] (25)
0<z<h 0<z<o0

A result by Lo (1983) shows that the posterior law of sup, | Wy (z)| tends to distribution of
the supremum of a Brownian bridge. Furthermore, (i) Proposition 4 implies that the posterior
of of supg<; <y ]M (z) — M, (z)| tends, as n increases, to a distribution degenerate at zero, and (i1)
M, (b) tends to My(b) a.s.-P§°, as a consequence of Frees (1986) and (4). Asa consequence, from
(25) the relationship

n—00 <z

lim P ( sup [A2n(z)| > €| X, ) =1 Ve>0. (26)

The same approach can be used in order to prove that Ay, (z) is asymptotically equivalent to

SR (FF W) (z) = Zkfmwn(z—y)dF*’“‘l(y)
k=1 k=1 0
= Sk [ Balw—y)dFtly)
;fo y y
133 / “Wa(e —4) - Bu(o — 9)) dF*1(y)
k=1 v0

= Zkf —y)dF*1(y) + 0 ((loglogn::;(logn)lﬂ) -

Taking into account that Bﬁ is a Brownian bridge on the scale of Fo, result (22) is obtained as n
goes to infinity.

13



The Gaussian process (22) possesses a mean function and a covariance kernel equal to:

E[GH#)] = 0 (28)
ElG(t)Gly)] = E[ZZM f f yB(Fo(f*U))B(FO(yﬁU))dFJk_l(u)ng‘h1(U}J
k=1 k=1 0 Jo
- ggkhfofo{min(m—u), oy —v))
—Fy( —u) Fo(y — v)} dF 1 () dFPh—1 (o). (29)

Remark When y = ¢, formula (29) considerably simplifies. In fact, by observing that
t ot
/ / min(Fp(t — u), Fo(t —v)) dFy*=1(v) dFh =1 ()
Jo Jo
t v t M
= [ [ Rt -vamtwam-i o | [ ot = wy ampruy ampir
0 Jo 0 Jo
¢ ¢
= / Fo(t —v) FgF 1 (v) dFgh~1 () + f Fot — ) Fg™ " (u) dFgh=1(u)
4 0

- /0 t Fo(t — u) d(Fg* (u) Fph=1(y))

= /t Fg* Mt — u) Byt — w) dFy (u)
0

= (Fox (B Fp-1y)(p); (30)
/ﬂ Byl — dFFE=(u) = Pk (), (31)
fo Rt — ) dE () = Fh(2); (32)
from (29) and (30)-(32) it is easy to deduce the following relationship
BGWY = S5k {@« et By - g EsM(6)} (33)
k=1k=1

Proposition 5 provides a simple idea to approximate the posterior of M(-), since it suggests
to approximate the posterior of (Vn{M(t) — Mn(t)), 0 <t <b) with a Gaussian process having
null mean function and covariance kernel (29). The representation formuls, (22) provide a simple
idea on-how to perform such an approximation. In view of (18), it is enough to take an integer K
sufficiently large, and to approximate the posterior law of \/n(M(-) — fT/fn( ) with the probability
distribution of

K t _ _
3k /U B(Fy(t —y)) dFrt-1(y). (34)
k=1

Because of the special structure of (34), the problem of simulating trajectories of the stochastic
process (34) essentially reduces to simulate trajectories from a Brownian bridge.
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5 Conclusions fre b

In this paper we have provided a simple (and convenient, as well) way to approximate the posterior
distribution of the renewal function, based on :Bayesian bootstrap. Such an approximation is
particularly remarkable because of its simplicity, and also because, in view of Proposition 1, it
provides an approximation for the whole random function A ().
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