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Abstract

We construct a generalized version of Muliere et al (2000) Reinforced Urn Processes,
with two major differences: (i) the state space is allowed to be continuous and
(ii) the urns involved in the reinforcement device are those introduced by Pitman
(1995) and (1996). Such urns do not necessarily generate exchangeable sequences.
We study the dynamic and asymptotic properties of such a process. In particular we
derive a representation theorem which hints for a weak notion of mixture of Markov
chain distributions. We study the connection with some known priors in Bayesian
Nonparametrics.
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1 Introduction.

Pólya’s urn is the most popular sampling scheme used to generate exchange-
able sequences, but it can be a basis to generate non-exchangeable processes
as well. Muliere et al. (2000) introduced in the context of Bayesian nonpara-
metrics the so-called Reinforced Urn Processes (RUP), i.e. reinforced ran-
dom walks on a countable state space, whose points are associated to discrete
Pólya’s urns, and stressed the connection with many nonparametric prior mea-
sures.
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A RUP can be described by the following example. Suppose an individual (or
particle) moves around in a space S made of a countable number of possible
positions, that we call “islands”. At each given island, the particle remembers
only the sequence of past migrations performed from that island, and tend to
repeat them, with a rate equal to the number of times they were performed in
the past. In this setting the sequence of all migrations from every fixed island,
is a Pólya (exchangeable) sequence, whereas the whole process turns out to be
Markov-exchangeable: under some recurrence conditions, such a process turns
out to be a mixture of Markov chain distributions (see Diaconis and Freedman
(1981), Zaman (1984)).

In this paper we introduce a model where we are interested not only in the
island the particle moves to, but also in the exact point within that island
where the particle chooses to “rest”until the next migration. We construct an
extended RUP process suitable for this problem when it is assumed that:

(i) the set of all possible exact locations in each island is uncountable;

(ii) before migrating, the particle remembers, as in the original RUP, only the
migrations performed in the past from the current island, say i; however in
the new model the particle will consider any two migrations from island i to
island j as distinct if they lead to two different exact locations in j;

(iii) the memory of the particle is also allowed to follow an updating rule which
is not necessarily Pólya and may differ from island to island: the updating rule
itself becomes a parameter of the model.

To this purpose, we construct a process on a continuous state space parti-
tioned in a countable number of classes, and we will associate to each class
an urn model with a sampling scheme of the type introduced by Pitman
(1996); for this reason we will call such a process P-RUP. Pitman’s sam-
pling schemes generate sequences on continuous state spaces which are not
necessarily exchangeable, but which include Blackwell-MacQueen (1973)’s ex-
tension of Pólya’s scheme as a particular case. When all Pitman urns used in
the process are exchangeable, and suitable recurrence conditions are satisfied,
then the P-RUP is a concrete example of Markov-exchangeable sequence with
atomic kernel i.e. it admits a representation as mixture of Markov chain laws
(Fortini et al (2002)).

The choice of Pitman’s sampling schemes is motivated by the fact that they are
useful for sampling in contexts, like Population Genetics, where the conditional
probability, given the past observations, that the next item is of a new distinct
type, does not depend on the labels (the colors) used to mark the previous
observations. As stressed by Zabell (1992), when sampling from an urn of
Pitman’s type, we don’t need to know in advance the set of colors that will
actually be selected. Consistently P-RUPs, are an appealing tool to deal with
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contexts of similar nature, where the observations may not be exchangeable.
In the case of the migrating particle, P-RUPs are a possible tool to predict
the colonization of a new distinct island and/or the settlement into a new
distinct location, where no Euclidean distance between locations is necessarily
assumed.

The paper is structured as follows. In Section 2 we recall Muliere et al. RUPs;
in Section 3, after a review of the basic traits of Pitman’s schemes, we define
Reinforced Urn Processes based on Pitman’s sequences (P-RUP); in section
4 the connection with the discrete RUPs is pointed out; explicit formulas for
the discovery of new distinct islands and locations are given in section 5; in
section 6 we discuss the types of recurrence for a P-RUP and we find a limit
theorem for recurrent P-RUPs; section 6 is devoted to studying the support
of recurrent P-RUP; in section 7 we stress the connections with Bayesian
nonparametrics and with known partition structures (e.g. 2-parameter GEM
distribution), section 8 has some concluding remarks.

2 Reinforced Urn Processes.

Muliere et al. (2000) introduced Reinforced Urn Processes (RUP) as reinforced
random walks on a countable state space of independent Pólya urns. The
definition of the process depends on four elements:

1. A countable state space of “islands ”, S;

2. A finite set of colors E, with cardinality k ≥ 1.

3. An urn composition U which maps S into the set of k-tuples of nonnegative
real numbers whose sum is a strictly positive number.

4. A law of motion q : S×E → S (for every x ∈ S we denote it by c 7→ qx (c)).

A Pólya urn is associated to every point x ∈ S, whose initial composition is
given by U (x) = {αx {1} , ..., αx {l}}. The law of motion q is assumed to be
such that, to every x, y ∈ S, there is at most one color c (x, y) ∈ E such that
qx (c (x, y)) = y. The RUP X = (Xn)n≥0 is defined recursively, as follows: fix
a starting point X0 = x0. For every n ≥ 1, if Xn−1 = x ∈ S, then a ball is
randomly picked from U (x), and its color c ∈ E will indicate where X will
go next, according to the function q, i.e. Xn = qx (c). Meanwhile the ball is
returned in U (x) along with another ball of color c (Pólya urn scheme). We
will write X ∈ RUP (S,E, U, q) with initial state x0.

An equivalent definition of RUP, suitable for our purpose, is given in terms of
their predictive distributions and the array of successor states. Consider, for
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every m ≥ 1 and x ∈ S, the times τx,m of the m -th visit of X to the island
x ∈ S, as:

τx,1 := inf {n : Xn = x}
and, for m ≥ 2

τx,m := inf {n > τx,m−1 : Xn = x} . (1)

The m-th successor state of x is the next destination of the particle after its
m-th visit to x:

Vx,m := Xτx,m+1I (τx,m < ∞) + ηI (τx,m = ∞) (2)

for some conventional η /∈ S.

Definition 1 A random sequence X, starting from x0, is a RUP with param-
eters (S, E, q, U) if it satisfies, for every x, y ∈ S:

P (Xn+1 = y|Xn−1 = xn−1, Xn = x) =
α̃x {y}
θx + nx

+
1

θx + nx

nx∑

j=1

δVx,j
{y} (3)

where α̃x {y} = αx {q−1
x (y)}, θx =

l∑
j=1

α̃x {j} and nx =
n−1∑
i=1

I (Xi = x).

In this definition the space of colors E is no longer essential if we replace the
urn parameter U with Ũ = {Ũ(x) : x ∈ S} where Ũ(x) = (α̃x{y} ≥ 0 : y ∈ S)
where, for every x ∈ S, α̃x is positive only on finitely many points of S. We
can therefore write X ∈ RUP (S, Ũ).

If a X ∈ RUP (S, Ũ) satisfies, for every x ∈ S

P
( ⋂

m>1

{τx,m < ∞} |τx,1 < ∞
)

= 1, (4)

that is, if X is strongly recurrent, then (Diaconis-Freedman (1981)) there exists
an a.s. unique random kernel π on S∗ × S∗, where S∗ = S ∪ {η}, such that
X|π is a Markov chain with transition matrix π.

The random kernel π = (π (x, ·) : x ∈ S∗) turns out to be made of independent
rows given by

π (x, ·) = lim
nx→∞

1

nx

nx∑

j=1

δVx,j
(·),

and therefore, by Pólya’s properties, π (x, ·) has a discrete Dirichlet with pa-
rameter U (x), for every x such that τx,1 < ∞, whereas π (x, ·) = δη for all
other x’s (Muliere et al. (2000), 2.11); the necessity of augmenting S with η
is exploited in Fortini et al. (2002)).
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3 Reinforced Urn Processes based on Pitman’s sequences.

In this section we extend the notion of reinforced urn process in two directions:

(1) we allow the spaces S and E to be measurable complete, separable metric
spaces.

(2) instead of discrete Pólya’s urn scheme, we use Pitman’s scheme to model
the reinforcement of the process.

As we said in the introduction, the choice of Pitman’s family of prediction rules
stems from the fact that minimal assumptions are made on the state space,
which is uncountable and does not even need to be ordered. Sampling new
items and labelling them are independent matters. Pitman sampling schemes
lead to random distributions where the sizes of the atoms are independent of
their locations. This makes Pitman’s schemes a very general class of nonpara-
metric models. We first recall how Pitman’s model is described, and then we
will construct extended RUPs.

For each n ≥ 1, let X(n) = (X1, . . . , Xn) be an S-valued sample. To predict
Xn+1 under exchangeability, we would only need the information carried by
the empirical distribution function induced by the sample:

F (X(n)) = n−1
n∑

i=1

δXi
(·).

Pitman’s scheme is defined in terms of similar prediction rules, where the
empirical measure, sufficient for prediction, is given by a more informative
function:

Tn(X(n)) = (Kn, Ln,Nn)

where Kn ≤ n is the number of distinct values observed in X(n); Ln =
(X̄1, ...X̄k) is the set of such values ranked in their (random) order of ap-
pearance, and Nn = (N1, ..., NKn) is the vector of their absolute frequencies
where

∑Kn
j=1 Nj = n.

Definition 2 Let ν be a diffuse probability measure on (S,S). A Pitman se-
quence is an S-valued exchangeable sequence X = (X1, X2, ...) with predictive
distribution given by:

P(X1 ∈ ·) = ν (·) (5)

and for n ≥ 1,

P(Xn+1 ∈ ·|X(n) = x(n)) = f ∗
(
Tn(x(n)), ·

)
(6)
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where, if Tn(x(n)) = (k, {y1, . . . , yk},nn),

f ∗(Tn(xn), ·) =
k∑

j=1

λj(nn)δyj
(·) +


1−

k∑

j=1

λj(nn)


 ν(·), (7)

for some non-negative function λ = {λj(nn) ∈ [0, 1] : j = 1, . . . , k + 1} such
that∑k

j=1 λj(nn) ≤ 1 .

Pitman’s prediction rules depend on two parameters: (λ, ν). The role of ν is
of a sort of a random paintbrush, which assigns a distinct color to every new
distinct item appearing in the sample. The diffuseness of ν makes sure that the
colors are a.s. distinct. On the other hand, the function λ determines alone
the probability that the next observation will be equal to the j-th distinct
observed item or else that it will be of a new type. As shown by Pitman
(1995), if nn = (n1, . . . , nk),

λj(nn) = P(Nn+1 = nn + ej|Nn = nn) =
pλ(nn + ej)

pλ(nn)
, (8)

(j = 1, . . . , k + 1) for some non-negative function pλ, such that

k+1∑

j=1

pλ(nn + ej) = pλ(nn)

where ej = (δij : i = 1, . . . , k +1) and δij is the Kronecker delta. A de Finetti-
style representation theorem for pλ is proved in Pitman (1995). There are
random a.s. limit relative frequencies

(P1, P2, . . .) = lim
n→∞n−1Nn

such that
∑

j Pj ≤ 1, and their distribution µλ is such that

pλ(nn) =
∫ k∏

j=1

P
nj−1
j (1−

j−1∑

i=1

Pi)dµλ (9)

The function pλ is called the partially exchangeable partition probability func-
tion (PEPF) relative to λ (or to µλ).

The predictive distribution (7) converges in total variation, as n goes to infin-
ity, to a random limit distribution of the form

F (λ,ν) (·) =
∑

j≥1

PjδȲj
(·) +


1−∑

j≥1

Pj


 ν (·) (10)

where: P = (Pj : j ≥ 1) has the distribution µλ, independent of the Ȳj’s, and
the Ȳj’s are iid with common law ν (see Pitman (1996), prop. 14).
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If a Pitman sequence is exchangeable, then by de Finetti’s theorem it is iid
(F (λ,ν)), conditional on F (λ,ν). We call F (λ,ν) a Pitman random distribution
with parameters (λ, ν). In Pitman-Hansen (2000) a necessary and sufficient
condition on λ to make a Pitman sequence exchangeable is that, for every nn,
pλ(nn) is a symmetric function of its arguments and it is called exchangeable
partition probability function (EPPF). Examples of EPPFs can be found e.g.
in Pitman (2002) and Gnedin-Pitman (2005).

We are now ready to extend Reinforced Urn Processes, by using Pitman’s
prediction rules instead of discrete Pólya urns; this will lead to a reinforced
random walk on a continuous state space. Denote with Z the space of all
possible parameters (λ, ν) for Pitman’s sequences. The parameters of a Pitman
RUP are 5:

1. A Polish state space (S, S), endowed with its Borel σ-field.

2. A continuous spectrum of colours, represented by any Polish set (E, E).

3. A countable partition A = (A0, A1, ...) of S.

4. A function U : N0 → Z which associates, to every class Ai ∈ A (i ≥ 0), a
pair Ui = (λi, νi) of Pitman’s parameters. Thus U = {λi, νi}i≥0.

5. A law of motion q : N0 × E → S.

We assume that, for every i = 0, 1, 2, ..., qi (·) = q (i, ·) is such that, if S(i) :=
qi (E), then qi (·) : E → S(i) is measurable and one-to-one and onto. Thus the
induced measure ν̃i := νi ◦ q−1

i is also diffuse on S.

In the migrating particle example, any point x ∈ S represents an exact loca-
tion; any class Ai ∈ A a distinct island. The process behaves like the discrete
RUP ; however we will need to introduce some constraints on the reinforcement
device: for every i ≥ 0 and x, y, z ∈ S, if x, y ∈ Ai, the difference between the
two observed transitions x → z and y → z will be considered as irrelevant to
predict future observations, because both starting points belong to the same
“island”. However, we will still distinguish between any two transitions with
different arrival points (e.g. between z → x and z → y).

The new random walk X = {Xn}n≥1 ∈ S∞ is defined recursively as follows:
fix X0 = x0 ∈ A0. For all n ≥ 1, i ≥ 0, if Xn ∈ Ai, then a ball is drawn from
Ui according to the Pitman rule (λi, νi), and its color c shows where X will go
next, according to qi (c). The ball can be of an old (i.e. already sampled from
Ui) color, or a new distinct one, randomly chosen according to νi. For such a
process we will write X ∈ P −RUP (S,E, A, U, q).

In order to give a formal definition of P-RUPs, the notion of successor states
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will be redefined in terms of a different sequence of stopping times. Let

τ̃j,1 = inf {n : Xn ∈ Aj}
and for m ≥ 2,

τ̃j,m = inf {n ≥ τ̃j,m−1 : Xn ∈ Aj} .

In words, τ̃j,m is the time of the m− th entrance of X in Aj. Fix some η /∈ S.
For every j = 0, 1, ..., define the new successor states as

Vj,m = Xτ̃j,m+1I(τ̃j,m < ∞) + ηI(τ̃j,m = ∞).

For every n and i, let ñj =
n∑

i=1
I (Xi ∈ Aj) and denote

T j
n(X(n)) = Tñj

(Vj,ñj
) = {Kj

n, Lj
n, N j

n} (11)

with the function Tn defined as before.

Definition 3 A random sequence X = ∈ S∞ is a Pitman-Reinforced Urn
process (P-RUP) with parameters (S, A,E, U, q), starting from X0 ∈ A0 if, for
every n and i

P (Xn+1 ∈ B|x1, . . . , xn−1, xn ∈ Ai) = f ∗
(
T i

n(x(n)), B
)
, (12)

where, if T i
n(xn) = (k(i), {v̄i,1, . . . , v̄i,k(i)},nñi

},

f ∗(T i
n(xn), B) =

ki∑

j=1

λi
j(nñi

)δv̄i,j
(B) +


1−

ki∑

j=1

λi
j(nñi

)


 ν̃i(B), B ∈ S.

Remark 1. Due to the previous definition, we can study, without loss of
generality, the properties of P-RUPs just by looking at the case when E = S
and qi is ∀i the identity map from S to itself. In this case, we will write that
X is a P −RUP (S,A, U).

Let X ∈ P −RUP (S, A, U) such that, for every (λ, ν) ∈ U , λ satisfies (8) for a
pλ symmetric in its coordinates. Then all sequences of “successor states”Vi are
exchangeable, and therefore the process is Markov-exchangeable (Fortini et al.
(2002)) so that, if the process satisfies a certain property of class-recurrence
then its distribution is that of a Markov chain in S with a random transition
matrix made of independent rows (see section 5).
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4 The relation between Reinforced Urn Processes and Pitman’s
Reinforced Urn processes.

The original RUPs can be recovered by a discrete filtering of an appropriate
P-RUP, where each urn involved is of a Blackwell-MacQueen type.

Proposition 4 Assume that X is a P-RUP(S, U, q), satisfying the following
conditions:

(i) U = {λi, νi} is such that, for every i ≥ 0, λi = λθi , where, if T i
n(X(n)) =

(k, Li
n, (ni1, . . . , nik)),

λθi
j (ni1, . . . , nik) =

nij

ñi + θi

(j = 1, . . . , k).

(ii) For every i = 1, 2, . . . , νi(Aj) > 0 for finitely many j’s.

For a countable state space Z = {z0, z1, ...} define a measurable function fA :
S → Z such that, for every i ≥ 0,

fA(x) = zi ⇐⇒ x ∈ Ai (13)

Then the process Y = fA(X) is a discrete RUP (Z, UA), where, for each zi ∈ Z
UA(zi) = {θiν

i ◦ f−1
A {z} : z ∈ Z}.

Proof. Let m̃i = sup{n : τ̃i,n < ∞}. Condition (i) implies that, for every
i, the first m̃i coordinates of Vi (X) follow a Blackwell-MacQueen prediction
rule. Remember that, if W is a Blackwell-MacQueen sequence on (S,S), a well
known property is: for every B ∈ S

P(Wn+1 ∈ B|Wn = wn) = φ(
n∑

m=1

I(wm ∈ B)) (14)

that is, the above probability depends only on how many observations already
felt in B (see Zabell (1992)). Property (14) implies that, for every partition A
of S, for every C ∈ Z

P(fA(Wn+1) ∈ C|W(n) = w(n)) = P
(
fA(Wn+1) ∈ C|fA(W(n)) = fA(w(n))

)

and fA(W ) is a discrete Pólya sequence on Z. As a consequence, V ∗
i := fA(Vi)

is the sequence of successor states of Y relative to zi, so that Y satisfies the
prediction rule ( 3) and this makes Y a RUP (Z, Ũ∗) where Ũ∗

z {x} = θzν
z{x}

for each z, x ∈ Z.
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Remark 2. The equality (4) actually characterizes Blackwell-MacQueen pre-
diction rule among Pitman’s sequences. For a discrete filtering of general P-
RUP, where there is a parameter λi different from λθi , the information carried
by the counts

n∑

m=1

I (fA (vi,m) ∈ C) , C ∈ S

is no longer sufficient to predict fA(Vi,n+1). In general, a discrete version of a
Pitman sequence X would obey to a prediction rule of the form:

P
(
fA(Xn+1) ∈ B|fA(X(n)) = fA(x(n)), γ(Tn(x(n)), B)

)
(15)

for some additional measurable function γ.

For instance, if λi is given by Pitman’s 2-parameter model

λi(n1, . . . , nk) =
ni − αk

n + θ
i = 1, . . . , k, (16)

for some θ > 0 and some α satisfying either 0 ≤ α < 1 or θ = −α, then it
is easy to see (Spanò (2003)) that γ

(
Tn

(
x(n)

)
, B

)
is the number of distinct

values of x(n) appeared in B:

γ
(
Tn

(
x(n)

)
, B

)
=

Kn∑

j=1

I (x̄,j ∈ B) .

It is still an interesting open problem how to classify Pitman’s sequences (and
hence also P-RUPs) according to the function t (vi,n, B) which is minimally
sufficient to satisfy (15) .

5 Discovering new islands and new exact locations.

Pitman’s sequences were entirely defined in terms of two conditional probabil-
ities, given the frequencies of the past observed types ranked in their order of
appearance: respectively, that the next observation is either of the j-th type,
or of a new one. In the same spirit, we can describe the law of motion of
a P-RUP, emphasizing its exclusive dependence on the islands and locations
actually observed in the past, ranked in their order of appearance. To this
extent we introduce a sort of island-analog of the triplet Tn(X(n)). Note that
all the results in this section do not need to assume exchangeability of the
Pitman sequences involved, i.e. U may contain any choice of λi : i = 1, 2, . . ..

Given A, for every sample X(n) ∈ Sn starting from x0 ∈ A0 let Hn ≤ Kn ≤ n
be the number of distinct islands visited by X(n), and let Cn = (Ā1, ..., ĀHn) be
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the list of such islands in their order of appearance. A class-analog of Tn(X(n))
is given by

R(X(n)) = (Hn, Cn, N̄n, ), (17)

where N̄n(X) = (N̄n1, .., N̄nHn), with

N̄nj =
n∑

i=1

I(Xi ∈ Āj).

j = 1, ..., Hn. As n →∞, the random limits C := lim
n

Cn and H := lim
n

Hn(X) ≤
∞ are well defined. Notice that the set C =

⋃
j≥1{Aj : τ̃j,1 < ∞}may not cover

the whole A. For the rest of this section, if not differently indicated, we will
use νi, λi as the parameters associated to Āi instead of Ai, and consistently
we will index Vi, T

i
n and so on.

5.1 The probability of migrating to new distinct locations.

The next proposition shows that in a P-RUP, after each visit to the the island
Ai, the probability of next moving to the point v̄i,j depends on the number of
times the location v̄i,j was “selected”in the past from the urn associated to i.
Moreover, while in Pitman’s sequences, each new distinct location was colored
at random according to a diffuse measure ν, in a P-RUP there are countably
many “paintbrushes”(νi : i = 1, 2, . . .) available. We see that the choice of
which νi to use is determined by the last sample observation.

Proposition 5 Let X be a P-RUP. Suppose that X(n) = x(n) is such that
xn ∈ Āi, Ln(x(n)) = (x̄1, ..., x̄k), Li

n(x(n)) = Lñi
(vi) = (v̄i,j : j = 1, .., ki) and

N i
n(x(n)) = ni

n. Then the probability of migrating to the l-th distinct location
(l = 1, ..., k) is

P(Xn+1 = x̄l|X(n) = x(n)) =
Ki

n∑

j=1

λi
j(n

i
n)δv̄i,j

({x̄j}). (18)

The probability of discovering a new distinct location is given by

P(Kn+1 = k + 1|X(n) = x(n)) =P(Xn+1 /∈ Ln|X(n) = x(n))

= 1−
Ki

n∑

j=1

λi
j(n

i
n). (19)

The conditional distribution of the next value, given that it is a distinct value
is

P(Xn+1 ∈ ·|Kn+1 = Kn + 1, xn ∈ Āi) = νi(·). (20)
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Proof. The part (18) is a trivial consequence of the definition of P-RUP. Since
νi is diffuse, then

0 = νi(Ln(x(n))) = νi(Lñi
(vi)). (21)

Now Li
n ⊂ Ln; then (18) follows, as well as

ki∑

j=1

λi
j(n

i
n)δv̄i,j

(Lc
n) = 0,

so that

P(Xn+1 /∈ Ln(Xn)|x(n)) =
ki∑

j=1

λi
j(n

i
n)δv̄i,j

(Lc
n) +


1−

ki∑

j=1

λi
j(n

i
n)


 νi(Lc

n)

= 0 +


1−

ki∑

j=1

λi
j(n

i
n)


 νi(S)

=


1−

ki∑

j=1

λi
j(n

i
n)


 .

The third part follow just by considering that, for every B ∈ S, Ln ∈ Ski
,

P(Xn+1 ∈ B ∩ Lc
n|xn) =


1−

ki∑

j=1

λi
j(n

i
n)


 νi(B ∩ Lc

n)

=


1−

ki∑

j=1

λi
j(n

i
n)


 νi(B)

by diffuseness, and since {Xn+1 /∈ Ln} = {Kn+1 = Kn + 1}, then

P(Xn+1 ∈ B|Kn+1 = Kn + 1, xn ∈ Āi) = νi(B).

5.2 The probability of new distinct islands.

A self-evident consequence of Proposition 5 is of some interest because it shows
that, whilst the probability of visiting a new distinct location only depends
on the parameter λi of the urn Ui, the probability of moving to a new distinct
island depends also on the labeling measure νi. This makes the choice of the
latter not so conventional as in the original Pitman sequences. Formally, let X
be a P −RUP (S, Ũ) starting from x0 ∈ A0 and let Ln(x(n)) = (x̄1, ..., x̄k) and
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Cn(x(n)) = (Ā1, ..., ĀHn). The probability of discovering a new distinct island
is

P(Xn+1 /∈ Cn|X(n) = x(n), xn ∈ Āi) =


1−

ki∑

j=1

λi
j(n

i
n)


 νi(S ∪ Cc

n)

The next corollary says that, conditionally on X(n), if we know that Xn+1 is a
point in a new island, then Xn+2 will be a further new distinct location with
probability one.

Corollary 6 Let X be a P − RUP (S, Ũ) and consider the number Kn of all
distinct locations observed up to X(n). Then

P{Kn+2 = Kn + 2|Hn+1 = Hn + 1} = 1

Proof. By construction,

Kn = |Ln| = |
Hn⋃

j=1

Li
n|, (22)

where |B| is the cardinality of B, Since |Li
n| ≥ 1, then

{Hn+1 = Hn + 1} ⊂ {Kn+1 = Kn + 1}

Now

{Hn+1 = Hn + 1} = {Xn+1 /∈ Cn} = {Xn+2 = Xτ(Hn+1)+1}
which implies that Ln+2 = Ln+1

⋃{Xτ(Hn+1)+1}, but by (12) and (13),

P{XτHn+1+1 ∈ ·|XτHn+1
} = νHn+1(·), (23)

and since νHn+1 is diffuse, then

νHn+1(LτHn+1
) = 0

so by (22), if Xn+1 /∈ Cn

Kn+2 = |Ln+2| = |Ln+1 + 1| = |Ln + 2| = Kn+2.

Actually the statement of corollary 6 can be extended: from every two distinct
islands, the particle will move almost surely to two distinct exact locations
(although these might both be in the same island). Let X be a P-RUP.

13



Proposition 7 For every m, l ≤ n suppose that Xm = Xτ̃i,hi
and Xl =

Xτ̃j,hj
with hi ≤ ñi, hj ≤ ñj and i, j ≤ Hn. If i 6= j, then Xm+1 6= Xl+1

a.s.P.

The proof is an immediate consequence of the property of mutual singularity
of any two Pitman random distributions, stated in the following lemma.

Lemma 8 Let ν1and ν2 be two diffuse measures on (S, S). Then two Pitman
random distributions F(λ,ν1) and F(λ,ν2) put positive mass on two a.s. distinct
distinct sets of points.of S.

Proof. Let Y1, ..., Yn be an independent S-valued sequence of random ele-
ments, where for some m < n, Y1, ..., Ym are iid with common law ν1, and
Ym+1, ..., Yn are iid according to ν2, with both ν1, ν2 diffuse. Then by diffuse-
ness P (Y1 6= ... 6= Yn) = 1. Consequently, if X1, ..., X2n are independent, with
X1, ..., Xn|F(λ,ν1) iid with common law F(λ,ν1), and Xn+1, ..., X2n|F(λ,ν2) iid with
common law F(λ,ν2), then

P {Ln (X1, ..., Xn) 6= Ln (Xn+1, ..., X2n)} = 1.

If we denote
L := lim

n→∞Ln (X1, ..., Xn) = {X̄1, X̄2, . . .}
and

L′ := lim
n→∞Ln (Xn+1, ..., X2n) =

{
Ȳ1, Ȳ2, ...

}
.

it follows that, a.s. P,

∑

j≥1

PjδX̄j
(L′)+


1−∑

j≥1

Pj


 ν1 (L′) =

∑

j≥1

PjδȲj
(L)+


1−∑

j≥1

Pj


 ν2 (L) = 0,

and the proof is complete.

Remark 3. Lemma 8 is interesting also because it shows that the mutual
singularity of Dirichlet processes is a property holding for the whole class of
Pitman’s random distributions. Notice that the distribution of sizes of the
atoms, (Pj)j≥1 can be the same for both F(λ,ν1) and F(λ,ν2).

6 Recurrence of the process.

In this section we discuss the role of two different notions of recurrence; the
first one (class-recurrence) is needed for a de Finetti-style representation of
P-RUPs as it ensures the convergence of an appropriate empirical measure to
a random transition kernel, the second one (state-recurrence) can be used in
applications.
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6.1 The role of class-recurrence.

In the discrete case, strong recurrence was defined as the property that, if a
state is visited once, then it will be visited infinitely often with probability one.
We may call such property state-recurrence. For P-RUPs we need a weaker
recurrence condition, which we call class-recurrence, namely: if a class is
visited once by X, then it will be visited again infinitely often, almost surely.

Definition 9 Let A = (A0, A1, . . .) be a countable partition of S. A random
sequence X ∈ S∞ is class-recurrent with respect to A if, for every i ≥ 0,

P
( ⋂

m>1

{τ̃i,m < ∞} |τ̃i,1 < ∞
)

= 1. (24)

Remark 4 Of course, state recurrence implies class recurrence whereas the
converse is not true. In general, if a sequence X is class recurrent with respect
to A, then it is class recurrent with respect to any coarser partition B ⊇ A.

For the law of a P-RUP with exchangeable V - rows, class-recurrence is a
sufficient condition in order to achieve a representation as mixture of Markov
chain distributions, as shown in the next proposition. We extend the state
space to S∗ = S

⋃{η} (η /∈ S). For each sample realization x(n) consider the
empirical transition matrix m(x(n)) = {mn(i, ·) : i = 1, 2, . . .} given by

mn(i, B) =
1

ñi

ñi∑

j=1

δVi,j
(B), i = 1, 2, . . . ; , B ∈ S. (25)

Proposition 10 Let X be a P-RUP (S∗, A, U), starting from x0 ∈ A0, and
let C(X) = (Ai1 , Ai2 , . . .) ⊂ A be the sequence of classes of A visited by X in
order of appearance. Assume that U = {λi, ν

i}i≥0 is such that, for every i, λi

satisfies (8) for a symmetric function gi. If X is class-recurrent, then

mn(X)
D→

n→∞ π = {π(i, ·) : i ≥ 0}

where π is a random atomic kernel on N×S such that:

(i) π(i, ·) is independent of π(j, ·) for i 6= j;

(ii) for every j ∈ IC

π(j, ·) d
= F̄ j(·) (26)

where F̄ j is a Pitman random distribution, with parameters (λij , νij);

(iii) for every j /∈ IC,
π(j, ·) = δη.
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Moreover, X|(π, C) is a Markov chain on S with transition atomic kernel π
that is, for every n:

P(Xn+1 ∈ ·|X(n) = x(n), xn ∈ Āj; π) = π(j, ·). (27)

Proof. Under recurrence, for every i 6= j the sequences V̄i and V̄j are in-
dependent, infinite exchangeable sequences. In fact, for every n and i, the
value of Vi,ñi+1 depends on the set {T j

n(X(n)) : j 6= i}, only through the event
{τ̃i,ñi

< ∞} which, given C, has probability I(i ∈ IC). Moreover, because of
the assumption on U , the empirical distribution of every V̄j converges a.s. to a
Pitman random distribution F̄ i. Together with the independence, this proves
(26). The rest of the proof (Markov property) is a consequence of Theorem 4
in Fortini et al. (2002).

Let X ∈ P − RUP (S, A, Ũ) starting from X0 ∈ A0 and for each n, consider
Cn(X(n)) = (Ai1 , . . . , AiHn

). If for every n

νin(A0) > 0

then X is obviously class-recurrent. Class-recurrence of a P-RUP can be char-
acterized by means of the measures νi, i = 0, 1, . . .. This is done in the next
Proposition, which show once again that the choice of the diffuse measures
(νi)i≥0 is not immaterial in that it is the only parameter that determines the
convergence of the process. For every ordered collection C ⊆ A of subsets of
A, define IC = (i1, i2, . . .) ⊆ N if C = (Ai1 , Ai2 , . . .)

Proposition 11 Let X ∈ P − RUP (S, A, U) start from A0. X is class-
recurrent if and only if, almost surely, there exists a set C ⊆ A such that
A0 ∈ C and ,

(i) ∀i ∈ IC\{0}, νi(Ai) < 1;

(ii) ∀i ∈ IC , νi(C) = 1;

(iii)∀i ∈ IC\{0}, ∃ji ∈ IC , ji 6= i, s.t. νJi(Ai) > 0.

The key point for the proof is in the following Lemma.

Lemma 12 Let X be a Pitman sequence with parameters (λ, ν). For every
set B ∈ S such that ν(B) > 0, then Xn ∈ B for infinitely many n.

Proof. Assume ν(B) > 0 and define for every n, Fn = σ(X1, . . . , Xn) (with
F0 = {∅, S}) and En = {Xn ∈ B}. By (Levy’s extension of) Borel-Cantelli
Lemma, En is true infinitely often if and only if

∑

n≥1

E(IEn |Fn−1) = ∞.

16



But in our case,

E(IEn |Fn−1) →
∑

j

PjδYj
(B) + (1−∑

j

Pj)ν(B) > 0, n →∞

thus the series diverges and the proof is complete.

Now we can prove the proposition.

Proof. If X is a class-recurrent P-RUP, consider C(X) = limn Cn(X(n)). Then
A0 ∈ C(X) by construction. Now, if ν0(A0) = 1, X will never exit from A0,
i.e. P(C(X) = A0) = 1 thus the proposition is true for the degenerate case
IC = 0. If ν0(A0) < 1 then by Lemma 12 C(X) contains a.s. at least another
set Al, say. If νl(Al) = 1, then, once entered, X will never exit from Al, but this
imply that A0 is not visited infinitely often, which is a contradiction. Thus (i)
is proved. (ii) follows by the way C(X) is defined: if νi(C(X)) < 1, then a.s.
Xn will enter in some Al /∈ C(X) which is a contradiction. Part (iii) trivially
applies to C = C(X) as, if νji(Ai) = 0 for all ji ∈ IC(X), then τ̃i,1 = ∞ but
that contradict that i ∈ IC(X).

Conversely, assume (i) − (iii) for some set C including A0. (iii) implies that
C is a connected set i.e. there is a path between any two visited islands in C,
that X will perform with positive probability. Lemma 12 implies that, thanks
to (i) and, every such path will be performed infinitely often and, by (ii), X
will never exit from C.

6.2 A representation for class-recurrent Pitman-reinforced urn processes.

When in a P-RUP not all the V -sequences are exchangeable, the process is no
longer mixture of markov chains; nonetheless a weaker representation theorem
can be obtained.

6.2.1 Limit distribution for Pitman sequences

A partial exchangeable random partition of N can be viewed as the partition
induced on N by a Pitman sequence X = (X1, X2, . . .) via the equivalence rule:
i ∼ j ↔ Xi = Xj, with the equivalence classes ranked by their least elements.
In Pitman (1995) a representation theorem is proved for partially exchangeable
random partitions. Such a representation theorem can be trivially rephrased
in terms of Pitman sequences on a general state space S and so we state it
without proof: the only difference is that now (7) implies that iid(ν) random
positions are attached to distinct atoms.

Proposition 13 (Pitman (1995, th. 6)). Let X be a sequence in S with pa-
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rameter (λ, ν), and let X(n) be the restriction of X(n) to its first n coordinates.
Denote with Kn = K(X(n)) the number of distinct values observed in X(n), and
with Ln = (X̄1, . . . , X̄k) their locations. The following conditions are equiva-
lent:

(i) X is a Pitman sequence;

(ii) There exists a sequence of random variables P = (P1, P2, . . .) such that∑
j Pj ≤ 1 and a sequence of iid(ν) random variables Y = (Y1, Y2, . . .), inde-

pendent of P , such that, conditional on K∞ = k∗ ≤ ∞, for every 0 ≤ n < ∞,
k ≤ n, and ln = x̄1, . . . , x̄k

P(Xn+1 ∈ B
⋂

Lc
n|Kn = k, Ln = ln; P, Y ) = (1−

k∑

j=1

Pj)δYk+1
(B) B ∈ S;

(28)

P(Xn+1 ∈ B
⋂

Ln|Kn = k, Ln = ln; P ) =
k∑

j=1

Pjδx̄1(B), B ∈ S (29)

almost surely.

Let W(n) = W (X(n)) = (1 = W1 < . . . < WKn ≤ n) be the random positions
in 1, . . . , n at which (K(X(i)) : i = 1, . . . , n) jumps. Then W(n) is the collection
of the least elements of the partition Πn = (Πn1, . . . , ΠnKn) induced by X(n)

on {1, . . . , n}. The likelihood of the first n observations of a Pitman sequence,
conditional on the limit (P, Y ) can be derived by a repeated application of
proposition 13. For every x(n) such that K(x(n)) = k,W (x(n)) = w1, . . . , wk,

P
(
X(n) ∈ dx(n)|P, Y

)
=

k∏

j=1

(1− Sj−1)δYj
(dxwj

)
wj+1−1∏

ij=wj+1




j∑

m=1

Pmδxwm
(dxij)




=
k∏

j=1

(1− Sj−1)δYj
(dxwj

)
∏

i∈πnj

Pjδdxwj
(dxi) (30)

Averaging with respect to the Y ’s, from (30)

P({Πn = πn1, . . . , πnk}|P ) =
k∏

j=1

P
|πnj |−1
j (1− Sj−1).

which shows the connection with the characterization of PEPFs given by (9):
From Proposition 13, the unconditional probability of predicting a type al-
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ready sampled is:

P(Xn+1 ∈ B
⋂

Ln|Kn = k; P, Y ) =
k∑

j=1

PjδYj
(B) j = 1, . . . , k; (31)

Thus, for each collection of Borel sets Ai ∈ S, (i = 1, 2, . . .),

P
(
XWk+1 ∈ A1, . . . , XWk+1−1 ∈ AWk+1−Wk−2|P, Y

)
=

Wk+1−Wk−2∏

m=1

F(k)(Am),

(32)
where

F(k)( · ) =
k∑

j=1

PjδYj
( · ), (33)

that is: between any two consecutive jumps in Kn the observations in a Pitman
sequence are exchangeable. Notice that the property (32) is consistent with
Pitman (1995)’s Lemma 14 on partially exchangeable random partitions.

6.2.2 Mixtures of “Partially Markov”Processes.

From proposition 13 we are now able to give a representation for general class-
recurrent P-RUPs. Let X be a sequence in S∗ = S

⋃{η} and let A = (Am :
m = 0, 1, . . .) be a countable partition of S. For every n and i = 0, 1, 2, . . .,
consider the empirical measure Qn = {Qn(i, ·) : i ∈ ICn} given by

Qn(i, B) = T i
n(X(n)) = {K i

n, L
i
n, N

j
n}.

Proposition 14 The following conditions are equivalent:

(i) X is a class-recurrent P −RUP (S∗, A, U) starting from A0;

(ii) Let ψ∗n = (Li
n, K

i
n : i ∈ ICn) and set ψ∗ := limn→∞ ψ∗n. There exists a set

C ⊆ A satisfying (i)-(iii) of proposition 11 and an a.s. unique independent
sequence Q = {Qi : i ∈ IC} of random triplets Qi = (Ki, P i, Y i), such that,
for each i ∈ IC, conditional on Ki, (K i ≤ ∞)

(a) P i = (P i
1, P

i
2, . . .) ∈ [0, 1]∞ is independent of Y i, with distribution µλi such

that µλi(
∑

j=1 P i
j ≤ 1) = 1;

(b) Y i = (Y i
1 , Y i

2 , . . .) ∈ S∞ is a sequence of iid(νi) random variables;

(c) Conditional on Q and on ψ∗n, for n = 0, 1, . . . the law of X is described by:

P(Xn+1 ∈ ·|X(n) = x(n); Q) = χQ(xn, ψ
∗
(n); ·) (34)

where
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χQ(xn, ψ∗(n); ·) =
∑

i∈C

δxn(Ai)
k∗i∑

m=1

I(ki
n = m)


F i

(m)(l
i
n; ·) +


1−

m∑

j=1

P i
j


 δY i

m+1
(·)




+ δη

∑

i/∈IC

δxn(Ai) (35)

where

F i
(m)(l

i
n; ·) =

m∑

j=1

P i
j δv̄i,j

(·).

(d) Qn
d→ Q a.s. (P).

Proof. The proof is similar to Fortini et al. (2002)’s proof of theorem 4 for
markov-exchangeable sequences. Since for each pair l, m, Vl,m = Xτ̃l,m+1 for
some integer τ̃l,m, then the event {X1 ∈ dx1, . . . , Xn ∈ dxn} can be expressed
as

⋂Hn
l1

⋂ñl
m=1{Vl,m ∈ dxφ(l,m)} for some φ : N× N→ N. We can rewrite

ñl⋂

m=1

{Vl,m ∈ dxφ(l,m)} = {Π(Vl,(ñl)) = π
(l)
ñl,1

, . . . π
(l)

ñl,k
l
ñl

}⋂{Ll
n = {v̄l,1, . . . , v̄l,kl,ñl

}}
(36)

where v̄l,j is the j-th distinct value appearing in xφ(l,1), . . . , xφ(l,ñl). To see
that (i) implies (ii), consider that, by class-recurrence, for every i ∈ IC Vi

is an infinite sequence so that, by Proposition 13 there is a.s. a triplet pair
(K i, P i, Y i), with P i independent of Y i (given Ki) and Y i iid(νi). Let Q be
the collection of such triplets. Since Pi are the limit frequencies of Vi in order
of appearance, then (d) is true. Given Q, the event (36) has probability

k∏

j=1

(1− S
(l)
j−1)δV̄u,j

(dvwl,j
)

∏

m∈π
(l)
nj

P
(l)
j δdvl,wj

(dvl,m),

which implies that: (i), given Q Vi is independent of Vj for every i, j ∈ IC : i 6= j
and therefore (d) is true; (ii) by proposition 13, the predictive distribution of
X is just (34)-(35).

The converse is straightforward as taking the expectation over Q of a process
satisfying (34)-(35) returns (12).

From (31) we know that a Pitman sequence is not exchangeable apart from
between successive occurrence of new distinct values. Similarly, a P-RUP is
not a mixture of Markov chain distributions, apart from those periods while
no new locations are discovered by the process.

Corollary 15 Let X be a class-recurrent P-RUP(S∗, A, U). Let Emn denote
the event “no new locations are visited between Xm and Xn, (n < m)”. Con-
ditional on Q and Emn, Xn+1, . . . , Xm−1 is a Markov chain with transition
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probability given by

χQ(x, ψ∗(n); ·|Emn) =
∑

i∈IC

k∗i∑

j=1

δx(Ai)I(k
i
m = j)F i

(j)(·) + δη

∑

i/∈IC

δxn(Ai). (37)

where F i
(j)(·) =

∑j
l=1 P i

l δY i
l
(·).

The proof follows immediately from proposition 14 and from (32)

6.3 The role of state-recurrence.

Although only class-recurrence is necessary for the law of a P-RUP to be
represented as a mixture of Markov chain distributions, in some applications
one may wonder when not only the islands, but also the visited exact loca-
tions are strongly recurrent (state-recurrence). We want to provide necessary
and sufficient conditions for state-recurrence of a P-RUP. When a P-RUP is
Markov-exchangeable, a characterization is possible from a property of ex-
changeable Pitman sequences (Pitman (1996)). Let Y be an exchangeable
Pitman sequence with parameters (λ, ν). Define the size-biased pick of Y as

P̄1(Y ) = lim
n→∞n−1

n∑

i=1

I(Yn = Ȳ1).

If λ is such that
µλ(P1(Y ) > 0) = 1, (38)

then the predictive distribution of Y converges, in total variation, to an a.s.
discrete distribution:

F (λ,ν)(·) =
∑

j≥1

P̄jδȲj
(·)

where (P̄j)j≥1 and (Ȳj)j≥1 satisfy the same properties F (λ,ν) as in (10). In other
words, (38) implies that

(1−∑

j≥1

P̄j) = 0

almost surely, which means that every point of S, if sampled once, is sampled
infinitely often. The application of such a property to P-RUPa is immediate:

Proposition 16 A P − RUP (S, Ũ) X is state-recurrent if and only if it is
class-recurrent and the sequence of successor states Vi = (Vi,1, Vi,2, . . .) has a.s.
positive size-biased pick for every i ≥ 0 such that τ̃i,1 > 0.
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Proof. If X is a state-recurrent P-RUP then by definition, for each i ∈ IC , the
state V̄i,1 (which has distribution νi) will occur infinitely often, and therefore
P i

1 > 0 almost surely. The converse is trivial because, if Q is such that P i
1 > 0

for each i ∈ IC(X) almost surely, then Vi is, conditionally on Q an iid(F I)
sequence where F i =

∑
j P i

j δY i
j

and, given Y i, each state Yj will be visited

infinitely often.

Remark 5. From the distinction between class-recurrence and state-recurrence,
we may derive a refined version of P-RUP under some additional constraints
on the parameters of the urns. In fact, we have seen in the previous sections
that the limit transition kernel π is a function of the set of the islands actu-
ally observed by a P − RUP X. Consider a subset A0 of the state space S
and denote S0 = S \ A0. To A0 we associate as usual a Pitman urn U0 with
parameters (λ0, ν0). To every single point x ∈ S0, we now associate a Pitman
urn Ux with parameters λx, νx such that: (i) (38) is satisfied for every x and
(ii) νx(A0) > 0 for every x ∈ S0. Define the times τx,j and the successor states
Vx,j as in (1) and (2). Define a process X such that X0 ∈ A0 and, for every
n > 1,

P(Xn+1 ∈ B|X1 = x1, . . . , Xn−1 = z) = f ∗(T z
n(x(n)), B) (39)

where f ∗ is defined as in (12) but with the new times τx,j and successor states
Vx,j.

Such a process behaves exactly like a P-RUP but it identifies every new
distinct point as a new distinct island, so it is a P-RUP on S where A =
A0 ∪ ⋃

x∈S x /∈ A0 is now uncountable, however the process is state-recurrent
and therefore, with probability 1, each sequence Vi will select only at most
countably many points. Thus C = C(X) will be still countable with probabil-
ity 1.

7 Considerations on the support.

A recurrent P-RUP is conditionally distributed as a Markov chain, given the
limit random transition kernel π̃ made of independent Pitman’s distributions.
We may be interested in specifying which possible transition kernels on S∗,
are possible values of π̃. This is easily determined once we know the support
of a Pitman distribution. In fact, we saw that, under recurrence, the rows of
π̃ are Pitman independent random distributions. In this section we show that
the support of a Pitman random distribution is determined similarly to the
Dirichlet case, a result which is of independent interest also from a traditional
(i.e. exchangeable) nonparametric Bayesian perspective.
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We recall that the support of any probability measure Q defined on some
space (A,A) is the smallest closed set JQ ⊂ A such that Q

(
J c

Q

)
= 0. We

are interested in studying the weak support, then here we use the assumption
that S is a Polish space. In fact, when S is Polish, the space MS of all prob-
ability measures defined on S, is metrizable under the topology of the weak
convergence. Under such topology, let MS be the Borel σ- field generated
by MS. Now every Pitman’s random distributions F(λ,ν) will be viewed as a
random element F(λ,ν) : (Ω,F ,P) → (MS,MS). We will call its probability
distribution, π(λ,ν) := P ◦ F−1

(λ,ν), the Pitman prior induced by (λ, ν).

Proposition 17 Let F be a random distribution with a Pitman prior π(λ,ν).

Denote with µ̄λ,n the joint distribution of the first n coordinates
(
P̄1, ..., P̄n

)

of P̄ (n ≥ 1) . Assume that µ̄λ,n is continuous on the set

∆̄(n) :=
{
x ∈∆̄ : ∀j > n, xj = 0

}

Then the support of π(λ,ν) is given by

J∗(λ,ν) := {P ∈ (MS,MS) : JP ⊂ Jν} .

Proof. Let ∂̂ and S∞ be the Borel σ -field (under the topology of the weak
convergence) of ∆̄ and S∞, respectively. Since, for every A × B ∈ ∂̂ × S∞,
π(λ,ν) (A×B) = 0 if B ∩ S∞ν = ∅, i.e. if ȳ = (ȳ1, ȳ2, ...) ∈ B, then for every
j ≥ 1

yj /∈ Jν .

Thus

π(λ,ν)

(
F ∈ J∗(λ,ν)

)
= 1.

Now, for some integer m, consider a collection (A1, ..., Am) of m disjoint open
sets of R, and define Bj := Aj ∩ Jν (j = 1, ..., m). Consider the subset U ⊂
{1, ..., m} given by U = {j ≤ m : Bj 6= ∅}. Then U = {i1, ..., ikU

} for some
kU ≤ m. We denote B̄l = Bil , for l = 1, ..., kU .

We want to prove that, for every δ > 0,

π(λ,ν)

(∣∣∣F
(
B̄j

)
− P0

(
B̄j

)∣∣∣ < δ : j = 1, ..., kU

)
> 0, (40)

that is, that π(λ,ν) actually gives a positive mass in any open neighborhood of
P0.

To prove it, first notice that, for every j = 1, ..., kU , and n ≥ 1

ν (Yn ∈ Bj) > 0,
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and also
ν (Yn /∈ Bj) > 0.

so that, for every l ≤ k < ∞,

ν




l⋂

n=1

{Yn ∈ Bj} ,
k⋂

n=l+1

{Yn /∈ Bj}

 =

l∏

n=1

ν (Yn ∈ Bj)
k∏

n=l+1

ν (Yn /∈ Bj) > 0.

(41)

Now, by assumption, for every n ≥ 1,
n∑

i=1
P̄i is a continuous random variable

in [0, 1]. Therefore, for every ε, δ, η ∈ (0, 1), such that ε + δ < 1, there exists
a h, 1 ≤ h < ∞ such that

µ̄λ


∑

i>h

P̄i < 1− ε± δ


 > η

which implies that,

µ̄λ


∑

i≤h

P̄i < ε± δ


 > η

Consequently, by independence of atoms and locations, for every ε > 0,

µ̄λ


∑

i≤l

Pi +
∑

i≥h

Pi < ε± δ


 > 0

and this, together with, with k = h, implies that

π(λ,ν)

(
F

(
B̄j

)
< ε± δ

)
> 0.

Thus, setting ε = P0 (Bj) ,we obtain

π(λ,ν)

(∣∣∣F
(
B̄j

)
− P0 (Bj)

∣∣∣ < ε
)

> 0.

Analog reasoning apply for the joint distribution of
(
F

(
B̄i

)
: i = 1, ..., m

)
:

since we assumed continuity of µ̄λ,n on its support, then for every ε1, ..., εm

µ̄λ


∑

i≤l

PiδYi
(B1) < ε1 ± δ,

∑

i≤l

PiδYi
(B2) < ε2 ± δ, ...,

∑

i≤l

PiδYi
(Bm) < εm ± δ


 > 0

then (40) holds true, and the theorem is proved.

The next corollary tells us how the support of a P-RUP looks like.

Corollary 18 Let A be a countable partition of S, and set A∗A∪{η}. Let K
be the space of all atomic kernels on S, indexed by the classes of A. Endow
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K with the Borel σ-field κ, under the topology of the coordinate-wise weak
convergence.

Let π : (Ω,F ,P) → (K, κ) be the limit kernel of a class-recurrent P-RUP,
and φ = P ◦ π−1 its distribution. The support of φ is given by the set of all
π = {π (i, ·)}i∈N for which there exists a subset B ⊂ N for which:

Jπ(i,·) ⊂ Jνi
⊆ S; (42)

∀i ∈ B;
Jπ(j,·) = δη (43)

∀ j /∈ B; and

∏

i∈B

νi


⋃

j 6=i

Jνj


 > 0; (44)

νi


 ⋃

j∈Bc

Jνj


 = 0 (45)

Proof. The support of every random row of π is the support of a Pitman prior,
thus proposition 17 implies (42) for all recurrent classes. All non-recurrent
classes are trivial sequences of η′s which lead to (43). The last condition (44)
is necessary for B to be actually the index set of all and only the recurrent
classes.

8 Prior measures derived from Pitman-Reinforced Urn process.

Discrete Reinforced Urn Processes are used in Bayesian Nonparametrics to
generate and characterize known classes of prior measures, such as the Ferguson-
Dirichlet process, the Beta-Stacy process and, in general all Neutral to the
Right (NTR) processes. We can use a discrete filtering of a P-RUP to con-
struct particular instances of NTR processes.

Assume X is a class-recurrent P-RUP (S, A, U) starting from A0, with all
(λi, νi) ∈ U satisfying, (8) for some function gi (respectively) symmetric on
its arguments, and such that

ν̃0 (A1) = 1

and, for every i > 0

νi (Ai+1) = 1− ν̃i (A0) ∈ (0, 1) .
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Consider a discrete filtering fA as seen in section 4, such that fA : S → N0

and fA (Ai) = i . Then the discrete process

Y = fA (X)

is a reinforced random walk which, from every integer i, can only reach either
i + 1 or 0. Now, consider the sequence of “waiting times”spent by X between
the (j − 1)-th and the j-th entrance in A0:

T = {Tj = (τ̃0,j − τ̃0,j−1) : j = 1, 2, ...} ,

where τ̃0,0 := 0.

Being each sequence Vj,n exchangeable in all its coordinates until η appears, the
same arguments as in Muliere et al. (2000) (sec. 4) prove that the sequence T is
exchangeable, and its directing measure is a NTR process. The particular type
of NTR can be specified just by choosing the set of parameters U = {λi, νi}
in the underlying P-RUP. For example, the following instances of priors can
be derived:

(i) If we set λi = λθ as in Proposition 4, then T is a Beta-Stacy process on
N0, with parameters {θiνi (A0) , θiνi (Ai+1)}i≥0.

(ii) If we assume (ii) and, for every i, we set {θiνi (A0) , θiνi (Ai+1)}i≥0 =
{θ1ν1 (A0) , a + iθ1ν1 (A1)}, for some a > 0, then T is a two-parameter GEM
with parameters (θ1ν1 (A0) , a) such that either 0 ≤ 1 − θ1ν1(A0) < 1 and
a+ θ1ν1(A0) > 1, or 1 < θ1ν1(A0) and a = −m(1− θ1ν1(A0)) for some integer
m.

(iii) If, in particular, we let θi = θ > 0 ∀i, and

νi (Ai+1) = a + b [νi−1 (Ai)]

for an appropriate choice of a, b ∈ R, then T turns out to be a GEM with
parameter θ0ν0.

It would be interesting to understand the behavior of T when the Vi-sequences
are not necessarily exchangeable. In this case, from Corollary 15, the P-RUP
is Markov-exchangeable only between jumps in Kn. Therefore, for k ∈ N and
j = 1, 2, . . . define

T
(k)
j = (τ0,j − τ0,j−1)I(Kτ0,j

= Kτ0,j−1
= k).

Then, each sequence

T (k) = {T (k)
j I(T

(k)
j > 0), j = 1, 2, . . .}
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is finitely exchangeable (unless there exists some m such that Kn = k for every
n ≥ m almost surely), hence the array

T ∗ =
(
T (k) : k ≥ 0

)

is (finitely) partially exchangeable, in the meaning of de Finetti (1938). For
finitely exchangeable and partially sequences unfortunately there is not an
equivalent, de Finetti-style representation theorem. Some approximations can
nonetheless be found in Aldous (1985) and Eaton (1989). One should also note
that T ∗ is a smaller collection than the exchangeable T , as T ∗ does not include
those Tj’s for which a jump in Kn occurred between τ̃j−1 and τ̃j.

9 Conclusions.

Pitman’s prediction rules are an extension of Blackwell-MacQueen urn schemes,
which in turn generalize Pólya’s urn to general state spaces. In this paper we
have carried out a parallel extension for Reinforced Urn Processes. P-RUPs
are an interesting generalization of RUP not only for the state space where
they are defined, but also because allow the updating rule to vary from urn
to urn. P-RUP are not necessarily Markov-exchangeable: we have seen that
in general they are only “locally”Markov exchangeable, in those segments,
of random length, where the number of distinct visited locations does not
increase. However P-RUP is not, strictly speaking, a wider class than the
Markov-exchangeable family: the latter as shown by Fortini et al (2002), al-
lows for exchangeable V -sequences with possibly dependent updating rules. It
would be interesting to find a meaningful, similar construction with dependent
Pitman urns. One possible way is to observe that Markov-exchangeable pro-
cesses can be defined as those processes X for which mn(X) is, for every n, a
sufficient statistic. Similarly it would be interesting to generalize the study of
P-RUPs to those processes for which a sufficient statistic is (Cn(X), Qn(X)) as
defined above. Another appealing generalization is finding a P-RUP analog to
Reinforced Urn Processes in a continuous time setting (Muliere et al. (2003)).

A P-RUP generates exchangeable zero-blocks only is it is assumed that all urns
involved generate exchangeable sequences. In this case, P-RUP are a tool to
generate particular cases of neutral to the right processes. In this paper we have
only partial results about zero-blocks for general Pitman Rule. In particular, is
is an interesting open problem to find a de Finetti-style representation theorem
for zero-blocks generated by a P-RUP.
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