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Abstract
This paper considers a finite sequence of Bernoulli experiments. A subjective
modeler is interested in the notion of reinforcing observations from the past to pre-
dict new observations. She is also interested in the notion of the (finite) exchange-
ability of the sequence. The consequences of these two assumptions are investigated.
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1. Introduction. This paper is based on two ideas: reinforcement and finite exchange-
ability. The idea of reinforcement is the basis of many physical processes, such as spatial
exploration, learned behavior, evolution of organisms, feedbacks in economics, among
others. See, for example, Coppersmith and Diaconis (1986), Diaconis (1988), Pemantle
(1988), Iosifescu and Theodorescu (1969). Reinforcement is a model that works to predict
phenomena in different fields, such as biology, genetics, economics, physics and psychol-
ogy. Reinforcement also plays a role in Bayesian nonparametric inference. In this respect
the paper by Muliere, Secchi and Walker (2000) shows how the notion of reinforcement is
the key to the understanding of many of the currently used Bayesian nonparametric prior
distributions, such as the Dirichlet process (Ferguson, 1973), neutral to the right processes
(Doksum, 1974) and Pélya trees (Mauldin et al., 1992). The idea of reinforcement is also
the key to the paper of Walker (1998) and the paper of Muliere, Secchi and Walker (2003).

The second idea is that of finite exchangeability. It is well known that de Finetti’s
representation theorem (de Finetti, 1938) requires infinite exchangeable sequences and it
easily seen to be false if the sequence is finite. Finite exchangeability does not guarantee
the existence of a prior, see Diaconis (1977), Diaconis and Freedman (1980) and Feller
(1971, pp. 228-230).

In this paper the connection between reinforcement and finite exchangeability is ex-

plored.
To pin down the idea of reinforcement and to establish the context of this paper,
consider an infinite sequence of Bernoulli random variables, say X, X, .... Observations

are reinforced via the stipulation that, in the first place,
and

That is, having witnessed {X; = 1}, the subjective modeler of the sequence hypothesizes
that the probability of seeing the outcome {X; = 1} is greater than the probability for
the event {X; = 1}. In general, if 3, is any sequence of 1’s and 0’s of length n, then the
reinforcement plan is

P(Xn+l = I‘Xn =1, Enwl) > P(Xn = 1|En_1).
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In fact it is straightforward to show that this condition implies
PilXap = 1&a=0,0_0) < P Xu= 1|5,0)
and
PilXopr = 0| Xn =005 4 > P{Xs=0E, ).
A standard assumption of a modeler of a sequence is that the order in which the obser-

vations arise does not change the probability of the joint observations. That is, for any
permutation ¢ on {1,...,n},

P(Xy,...,X,)=P (Xgm, o X)) -

The celebrated de Finetti Representation theorem then guarantees the existence and the
uniqueness of a prior distribution on the closed interval [0, 1] such that

P(X1,., Xa) = [ (1 = p)" "™ n(dp),

fOI’ &H T, Where m = 21§i§n I(X,L = 1)

Suppose a beta prior is employed; 7(p) oc p*~ (1 — p)P~1, for o, 3 > 0. For such a
prior it is easily seen that

PXi=1)=a/(a+8)=m
and
P(X;=1X1=1)=(a+1)/(a+B8+1) = pa.

Modelling the first two observations actually pins down the beta prior exactly so let us
first only consider the reinforcement associated with the first two observations. It is

easy to check that ps > p; and so Bayes updates automatically provides reinforcement.
Allocating a (u1, po) pair is equivalent to allocating an (e, 3) pair via

Gl )
Mo — py
and
ﬂ:(l*mﬂl*M)
Ha — [

2. Infinite exchangeability and reinforcement. In general, it is possible to see that
the existence of a prior distribution ( i.e. infinite exchangeability) implies reinforcement,
which is established in the following lemma. In what follows we write, for example,
P{ Xy = 1| X=1, £} s P(1]1,2).

LEMMA. For any sequence % of 1's and 0’s,
P(1|1,%) — P(1|X) = Var(p|Z)/E(p|X) > 0.

PRrRoOOF. 5
Var(p|Z) = [p*n(dp|Z) — {/pm(dp[¥)}

= P(1,1|%) — P(1|z)?
= P(1]1,D)P(1]) — P(1|D)?
= P(1|Z) {P(1]1,X) - P(1|Z)},
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which completes the proof.

The amount of reinforcement can be understood via the conditional mean and the condi-
tional variance; that is,

P(1|1, %) — P(1]Z) = Var(p|%)/E(p|Z).

If the sequence of observations are infinite then the assumption of exchangeability implies
a prior. In this situation reinforcement must be constructed in such a way as to ensure
a prior does exist. In the case of a finite exchangeable sequence there is more freedom
for the type of reinforcement which can be done, since it only has to be compatible with
exchangeability, not with the existence of a prior distribution.

3. Finite exchangeability and reinforcement. The aim in this section is to see
how far reinforcement and finite exchangeability imply the existence of a prior. Consider
a finite population of size N. It is shown that reinforcement and finite exchangeability
imply the existence of a prior for N < 3.

N=2. Suppose we model two observations via the ideas of exchangeability and reinforce-
ment. So, define

Qi,J) = P(X1 =14, Xy = J)
for i, € {0,1} and Q(0,1) = Q(1, 0) to ensure exchangeability. Reinforcement is charac-
terized by

Q(1,1) > Q)

where @Q(1,1) + Q(0,1) = @(1). Thus Q(0,1) < Q(0) Q(1), where Q(0) =1 — Q(1), and
hence we can also show that Q(0,0) > @(0)%. We can now find a beta prior such that

QG,g) = [#(1—p)* 7 m(dp).

The parameters are given by p; = Q(1) and py = Q(1,1)/Q(1) from which o and 3 can
be calculated.

N=3. It is well known that we can write the probability @ as
Q = w3 Hooo + wiH111 + w3 Hoor + wiHon,

where Hjj, is an urn, sampled without replacement, consisting of the elements {ijk}. For
this representation, see for example Crisma (1971), de Finetti (1969), Kendall (1967) and
Diaconis and Freedman (1980).

So, for example, @(0,1,1) = Q(1,1,0) = w3/3, Q(0,1) = Q(1,0) = w3/3 + w3/3, and
so on. If we retain u; = P(1), pu2 = P(1|1) and let u3 = P(1]1,1) then we can solve for

(wd, w?, w, wi):

wi = 1= 3pu1(1 — pa) — prpiais
wS = HiM2af3

wi = 3p1(1+ pops — 2pun)

w} = 3pipa(l — p3).

It is easy to show that these weights are all non-negative given that pus > pg > p1.



The constraints from reinforcement can now be built in, having guaranteed exchange-
ability. Clearly, we have u3 > s > . There is also obtain an upper bound for ps.

LEMMA. p3 < 1= {p1(1— p2)*}/{p2(1 — p1)}.
ProOOF. From reinforcement, we have P(1]|1,0) > P(1|0). Hence

Q(1,1,0)/Q(1,0) > Q(1,0)/Q(0)

S0
papa(l = pa) - pa(l — pa)

p1(1 = p2) 1 =i

from which the result follows.

We now prove that we can find moments c; = E(p*) such that c3 = pipaps, c2 = pape and
¢1 = i1. The plan is to show that

(p1, p1fba, p1fops) € Ms,

where

Mz = {(Cl,CQ,Cg) fo = /pi'rr(dp), T E ’P}

and P is the set of probability measures on the Borel subsets of [0, 1]. The following is
taken from Skibinsky (1967). Define A to be the matrix

=(a2)
Cy C3
_(di dy
a- (G %)

where d) = 1 — ¢;, dy = ¢; — ¢3 and d3 = ¢ — ¢3. Then (¢1, ¢, ¢3) is an interior point of
M if and only if |A| > 0 and |B| > 0. Some elementary algebra leads to

and B to be the matrix

|A| = pipa(ps — uo)

and
|B| = (1 — p1)papa (1 — ps) — p (1 — pia)™.
Establishing the positiveness of |A| and |B] is straightforward and is seen to coincide with

the reinforcement constraints. Consequently, reinforcement and exchangeability imply,
for IV < 3, the existence of a prior distribution.

N=4. Let us add ps = P(1|1,1,1). Again, using the same representation for ¢} and
following Skibinsky (1967), the constraint on 4 to ensure the existence of a prior is given
by

p(ps — po) pa(l — pa)?

p3(pa — p1) pa(l — p2) .

The right hand-side inequality follows from the reinforcement constraint; via considera-
tion of P(1|1,0,1) > P(1|0,1). The left hand-side inequality does not follow from the
reinforcement constraint. The three inequalities for 4 come from consideration of

L3 + o paE 1 =

4



1. P(1]1,1,1) > P(11,1)
2. P(1]1,1,0) > P(1]1,0)
3. P(1]1,0,0) > P(1]0,0)

Inequality 1 gives pg > p3. Inequality 2 gives py < 1 — {ua(1 — u3)?}/{ua(l — po)} and
inequality 3 gives
u4>2—i+ papiapis — 22 +1)°
pa paps(l = 21 + prapin)
So the the lower bound for p4 is the maximum of the terms from inequalities 1 and 3,
which does not necessarily coincide with constraint for the existence of a prior.

4. The general case. Suppose we wish to undertake inference for a finite population
with the assumptions of exchangeability and reinforcement. Let the population size be
N. Thus we have

N
Q= ZinHr,N—r:
=0

where H, y_, is the urn with r 0’s and N —r 1’s. To complete the model we need to

assign values to the probabilities {w}Y | such that ¥ jw? = 1. A Bayesian would

take
| w = (1) [ -y aan,

for some prior distribution 7. If instead we only wish to assume reinforcement, then we
assign values to {u1,..., N}, where p, = P(1|1,_1), satisfying, it has to be said, some
rather complicated constraints. Thinking about @, the w’s can be found from the p,s

via
N T
w = ( . ) > ( :,; ) (—1)* AN—rs,
k=0

where

Now let Q(k, 1), for k+ 1 < N, be the probability of seeing £ 0’s and [ 1’s. Then

N—1
B v N—k-=1 / N
Q(kal)_gcwr (T—k r :
See, for example, Cifarelli and Regazzini (1996). The constraints of reinforcement are
then given by '

Qk,1+2)Qk, 1) > {Q(k, 1 + 1}’

for all k+1+4+2 < N. We can find the implications of these constraints on the A;’s
sequentially. Note that we can write

N—-Il r

Q(k: ‘E) = Z Z 61"3 Crkl ’\N—T-i-ja

r=k 7=0



where

and

(1Y)

From this it is possible to see that Q(k,!) depends only on {A,...,An} and so let us
write

Q(k, 1) = a7\ + B,

=)

and By, depends only on {A\1,...,Ax}. So, given {Ai11,...,An}, the constraints on A
are

where

N> o {QX(k,1+1)/Q(k, 1 +2) — B

for {k:k+1+2< N}
We also need to ensure that w” > 0. This is straightforward to also develop sequen-
tially and the constraint is

. T
AN—r = Y (1) ( I ) AN=r+k
forall™=1,2,..., N — 1, which is of the form X\, >~ and ~; depends on {A;11,.-.,An}

5. Conclusions. We have considered and discussed the assumptions of finite exchange-
ability and reinforcement starting from the fact that finite exchangeability alone does not
guarantee the existence of a prior. We show that finite exchangeability and reinforcement
imply the existence of a prior for N < 3. In order to ensure the existence of a prior for
N > 4 we need finite exchangeability, reinforcement and some further constraints on the

sequence {f1,..., UN}.
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