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1 Introduction

The concept of conditional independence, well known and very useful in
probability theory, becomes more interesting in the theory of statistical in-
ference, where it can be used as a basic tool to express many of the important
concepts of statistics, such as sufficiency, ancillarity and completeness (see,
for example, Dawid, 1979; Basu and Pereira, 1983; Mouchart e Rolin, 1984;
Lloyd, 1988). The purpose of this paper is to investigate in a completely pre-
dictive approach the relationship between sufficient, ancillary and complete
o-fields by using the language of conditional independence. The properties
of predictive sufficient o-fields are discussed in Section 3. Under the assump-
tion of exchangeability the equivalence of classical, Bayesian and predictive
sufficiency is can be proved (Section 4). The definitions of ancillary o-field
and complete o-field in a predictive framework, are given in Sections 5 and 6.
In particular the Basu’s results on the connections of sufficiency, ancillarity
and completeness and on the maximal ancillarity are revised in a completely

predictive approach (Sections 7 and 8).

2 Notation and preliminaries

Let (Q,F, P) a complete probability space, Fo = {(,Q} the trivial o-field,
Fo={A € F|P(A) =0 o 1} the completed o-field of Fo.
We shall denote by G the completed o-field of G, i.e. the least o-field con-
taining G and the P-null sets: G = GV Fy.
We define

F = {G sub-o-fields of F|G =G}
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It #,G € F, then # v G is the smallest o-field of F containing # e G.
For G € F

LY(G) ={z:Q — R,|r is G — measurable}
If z:(Q,F) — (R, B(R"))!, F* denotes the o-field generated by z.
Recall that A;, A; € F are independent o-fields if for any A; € A; e Ay € A,
we have:

P(Al N Ag) = P(A]_)P(Ag)

or equivalently, if for any z; € L1(A;), z2 € LT (A;)

E[z174] = E[z:1]E[zs]

The notation .AlﬂAg will be used to indicate that .A;, . A; are independent
o-fields. If we want to make explicit the role of the probability P in this
concept, we write A; || A; P

Now the definition and properties of conditional independence are briefly

discussed.

Definition 1 The conditional independence relation is a relation for a triple
of o-fields A;, A, G € F defined by the condition that for all z; € LT (A1),
x9 € LT (A2):

E[r,12|G] = E[2:|G)E[z2|G] a.s. (1)
The notation A;||A2|G or AlﬂAﬂg; P will be used

Clearly when G = Fy, Definition 1 corresponds to the usual independence of

o-fields.

In the following some elementary properties of the conditional independence

relation are listed:
1B(R™) denotes the Borel o-field associated to R™
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Proposition 2 (Mouchart and Rolin, 1984; van Putten and van Schuppen,
1985) LetA;, Ay, G € F. The following conditions are equivalent:

(i) AillA:|G
(i1) Ag|AilG
(1ii) for all z; € LT (A)

E[z:|A2 V G] = E[z1|G] a.s.

(i'.'.)) .Al vV gﬂAz A QIQ
(v) forall z€ LT (A, VG)

E[E[#(G]| 4| = Elz| 4] a.s.

In the following we give two sufficient conditions for a triple of o-fields to be

conditional independent.
Proposition 3 (van Putten and van Schuppen, 1985) Given A;, As,G € F.

a. If Ay € G or Ay C G, then Ai||A|G. In particular Ayl Az Ay,
Ayl Az| Ay

b. If Al A2V G, then As||A1lG

The property(iii) of Proposition 2 denotes that, conditionally on G, A, does
not give useful further information. Therefore the conditional independence
is the same as a sufficient property for o-fields (Skibinski 1967). Also the no-
tion of splitting o-field introduced by Mckean (1963) is the same as the notion
of conditional independence. Therefore will say that a o-field G satisfying

A1||A2|G is a splitting o-field.



Definition 4 The notion of minimal conditional independence C1,;, for o

triple of o-fields Ay, Ay, G € F is defined by the conditions
1. A||A2lG
2. ifHe F, HC G e Ai|AufH, then H=G.

The notation Ay As|G will be used.

The following definition of projection of a o-field on another was introduced

by Mckean (1963).

Definition 5 For any two sub-o-fields A;, Az € F we define the projection
of A; on Ay as follows:

o(A1|A2) = (0{E(z|As) : Vz € LY (AN} V Fo) e F

We observe that o(A;|A;) represents the completed o-field generated by ev-

ery version of the conditional expectation of every positive .4;-measurable

function.

The motivation to introduce the projection of o-fields is to construct the
smallest sub-o-field of a o-field A5 conditionally on which 45 becomes inde-

pendent of another given o-field A;. Indeed the following result is known.

Proposition 6 (Mouchart and Rolin, 1984) For any two sub-o-fields Ay, Az €

F.
i) AI_H_A2 |o(A1|A2)

ii) EfH = F, HC Ay e A1‘UA2|H e (7(./4.1'./42) & H
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Now we introduce the notions of the weak and strong identification among
o-fields. From a statistical point of view, it may be useful to recall that the
concept of identification of a statistical model corresponds to the weak iden-
tification of the o-field generated by the parameter, by the o-field generated
by the observation ; the concept of strong identification corresponds to the
concept of bounded completeness in the sens of Lehmann-Scheffé (for more

details see Florens, Mouchart and Rolin (1990)).

Definition 7 Let A;, A3, S € F. We shall say that A, is weakly identified

by A, conditionally on § if
\ o(A;VS|AVS)=A VS (2)

We write Ay < A1|S
If 8§ = Fy we say Ay is weakly identified by A, and write A; < A;.

We give in the following elementary properties of weakly identification.
Theorem 8 (Mouchart and Rolin, 1984) Let Ay, A3, A, B € F. Then
i) Ay < A;, AC Ay = Ay < A|A
i) Ay < Ai|B, BC A = Ay < A;

Definition 9 Let A1, A, S € F. we shall say that Ay is strongly identified
by A; conditionally on S if

Vi(X)e L*(A42VS) : E[f(X)|A1VS] =0 as. = f(X)=0 as. (3)

We write Ay << A;|S
If § = Fy we say A; is strongly identified by A; and write Ay << A;.
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The following theorem is useful in order to investigate the connection between

strong identification and minimal sufficiency.

Theorem 10 (Mouchart and Rolin, 1984)
Let A;, A3, S € Fandsc A;.
If Ai]|A2|S and S << A, then o(Az] A1) =8

The strong identification implies the weekly identification.
Corollary 11 If A; << Ay|S, then A; < Ay|S

In order to investigate the relationship between conditional independence,
sufficiency and ancillarity, it is important to introduce the concept of mea-

surable separability of o-fields.

Definition 12 Let A;, A; € =
A; and Ay are measurably separated (and we use the notation A, ||.As) if the

only events in common are trivial, that is if
./4.1 m Az = .7_:0
or, equivalently, if

Vz A;-measurable such that E(z|A;) =z a.s. = z = cost as.

3 Predictive sufficient o-fields

In the completely predictive approach of inference it is possible to recover
some fundamental concepts of classical statistical theory, possibly reformulat-

~ ed, as happens for the concepts of sufficient statistics. Predictive sufficiency
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and its properties have been investigated in many papers among which: Ci-
farelli and Regazzini (1980,1981, 1982); Campanino and Spizzichino (1981);
Dawid (1982); Secchi (1987); Muliere and Secchi (1992)). Related notions of
sufficiency have been studied by Lauritzen (1984, 1988), Diaconis and Freed-
man (1984).

Let (Q, F, P) a completed probability space. Let (y;):er a stochastic process
defined on (Q, F, P), with T C R. For s € T' we define

B; = Nps10{y,t < s+ 1} the past of the process (y;)

Bf = o{y:,t > s} the future of the process (y;).

We assume that B, B are completed with respect to the P-null sets.

Definition 13 A sub-o-field S; of B is said to be predictive sufficient if By

and B} are conditionally independent given S;, i.e. By ||BF|Ss

From Proposition 2 an equivalent definition is:

P(B|B; VS8,) = P(B|S;) a.s. VBe B} (4)

Using S, C B;, (4) becomes
P(B|B;) = P(B|S,) a.s. VBe B (5)

i.e. §; contains all the relevant information about the past B, which is needed
to determine the probability of future events in B. We can observe that B;
predictive sufficient o-field , but it is too large for our purposes. Evidently we
are interested to determine predictive sufficient o-fields S; C B: which are
small as possible. This approach allows to the notion of minimal predictive

sufficient o-field.



Definition 14 A sub-o-field S; of B; is said to be a minimal predictive
sufficient o-field if Bs‘|_]mmBj|Ss

Proposition 15 The projection o-field Ps = o(B}|B;) is a predictive suffi-
cient o-field. Moreover P is unique.
Proof

That P, is a minimal predictive sufficient o-field is proved in Mouchart and
Rolin, 1984. (Theorem 4.3).

P, is unique. Suppose that exists A; minimal predictive sufficient o-field
contained in By such that B ||Bf|A,. Property of minimality of Ps gives
P, C A,, but A, is minimal predictive sufficient, therefore A4, C P,.{

The following properties are almost immediate.
Proposition 16 P; has the following properties:
i) For any sub-o-field A, of B, containing Ps:
P(B|As) = P(B|P;) a.s. VB e B/
i) All sub-o-fields of B, containing Py are predictive sufficient, i.e. if A,
is a sub-o-field such that Ps C A, C B; :

P(B|A,) = P(B|B;) a.s. YBe€B!

iii) P, 2 (B N B;)

Proof
(i) VM € A, VB € BY E(IyI5) = E[E(IyIs|P,)]. Since Py is predictive suf-
ficient and A, C B, E[E(IyIp|Ps)| = E[P(M|P;s)P(B|P;)]. From the basic
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properties of the conditional expectation, being P(B|P;) a P,-measurable
random variable, we get E[P(M|P,)P(B|P;)] = E[InP(B|P;)]. Therefore
E(IylIg) = E[IMP(B|P;)] VM € A, VB € Bf.

(ii) and (iii) are proved in Mouchart e Rolin (1984).{

The problem of characterization of P, may be handled in the form of neces-

sary and sufficient conditions for a predictive sufficient o-field to be minimal.

Theorem 17 A predictive sufficient o-field S is minimal (i.e S = P,) if
and only if Ss < BY

Proof

(necessity) If S; is a minimal predictive sufficient o-field, then, from the
uniqueness of P,, we get S; = P;. Furthermore P, is weakly identified by
Bf. Indeed P, = U(B;"|Bs’) = o(B}|P;s) (see Mouchart and Rolin, 1984;
Corollary 4.9).

(sufficiency) Suppose that S; is predictive sufficient and §; < B;". We want to
show that S, is minimal predictive sufficient, i.e. 85 = P;. The conditions (i)
S, predictive sufficient and (ii) S; < B imply that (iii) §; << B, . Let M, C
S, and satisfies B || B; | M;. The condition (iii), being M, C S;, implies (see
Mouchart and Rolin, 1986; A.11(iii)(b)) that (iv) S, << B;|M,. Because
M, C S;, M, and S, are predictive sufficient o-fields and the condition (iv)
is satisfied, we have (see Mouchart e Rolin, 1986; A.12) B [[(B; V S;)| M.
Since S; C (By V &), we have BJ||S;|M; and, being M, C S;, we get
(see Mouchart and Rolin, 1986; A.6(ii)) o(BF|S;) € M,. But being by
supposition o(Bf|S;s) = Ss, we have §; C M,.{
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4 Relations between classical sufficiency, Bayesian
sufficiency and predictive sufficiency

In this section we formulate the definition of predictive sufficient o-field,
when (2 is a Polish space. We prove an asymptotic result for a sequence of
predictive sufficient o-fields and we investigate the connections between clas-
sical sufficiency, Bayesian sufficiency and predictive sufficient o-fields when
the process y = (yn) is an exchangeable sequence. Letta (1981) proves that
a classical sufficient statistic is always a Bayesian sufficient statistic, but the
converse is true only if the o-fields are separable. Fortini, Ladelli, Regazzi-
ni (2000)) prove the equivalence between classical , Bayesian and predictive
sufficient statistics under the hypotheses of exchangeability.

Let (X, x) be a measurable space. Write X" for the n-fold Cartesian product
and x™ for the usual product o-field (n = 1,2,...,00). Define y,ys,... to
be the coordinate random variables (r.v.’s) of X, i.e. y;(z) = z; for every
T = (x1,%q,...) in X*°. Let M the set of probability measures on (X, X).
M is made into a measurable space by the o-field M generated by all sets
{p € M :p(A) € B} with A in x and B in B([0,1]). If we assume that
X is a Polish space [separable, complete, metric space], then the same holds
for M and we can take x=B(X) and M = B(M). Let P a exchangeable
probability measure on (X, X). Recall that, under suitable conditions about
(X, x), P admits the de Finetti representation.

If X 1is a Polish space, then the following statements are equivalent

(S1) y1,Y, ... are exchangeable whit respect to P

(82) There is a random probability measure p [= r.v on (X, B(X*)), tak-
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ing values in (M, B(M))] such that p*°(A) is a version of the conditional
probability P{y € B|p} for every A in B(X>) , where p*° is the power proba-
bility measure which makes the coordinates i.i.d. [independent and identically
distributed] with probability distribution p.

(83) There ezists a unique probability measure v on (M, B(M)) such that

Plyc A} = [ p(A)ldp) (A€ B(X™))

This measure is said to be the de Finetti measure and coincides with the
probability distribution of p.

In particular the equivalence of (S1) and (S2) implies that y, are exchange-
able if and only if they are conditionally i.i.d. given the ofield o(p).

In the same setting as in Section 3, with (Q2, F, P) = (X, B(X*), P) let
B, = o{ym)} [where ym) := (1, .- Yn)] the past of the sequence y = (yn)n>1
and B = o{y;,1 > n+ 1} the future of the process y = (yn)n>1-

If we assume that X is a Polish space the definition of predictive sufficient

o-field can be formulated as the following.

Definition 18 A sub-o-field S, of B, is said to be predictive sufficient
w.r.t P if there is a reqular conditional probability distribution (r.c.p.d.) of
(¥i)iznt1 given S, w.r.t. P, say pn? such .that, such that w — u,(w, A) is a
version of P{(yi)i>ni11 € A|B, } for every A € B(X*)

We now recall some facts on tail o-fields.
By definition of r.c.p.d. i, : X*° x B(X*) — [0,1] is such that

(i) VA€ B(X®) w — pn(w,A) is a version of P{(yi)i>n+1 € A|Sn}

(ii) Vw € X® A — pp(w,A) is a probability measure on (X, B(X*))
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Definition 19 Let (Ay) be a sequence of sub-o-fields of B, . The tail o-field
Ar is defined as

When A, is non-increasing (i.e., Any1 C An Vn € Noor Ay |) A = M50 An,
whereas when A, is non-decreasing-or equivalently a filtration-(i.e., A, C

Aps1 Yn € Nor A 1), Ar = Ao = Vo An-

Theorem 20 Let y = (yn)a>1 be the sequence of coordinate r.v.’s of X
Let (S,) a sequence of sub-o-fields of B, and let S, be a predictive sufficient
o-field for everyn € N. Then

lim P{B|S,} = P{B|Sr} Pgq.c VBeB;

where St 1s the tail o-field correspondent to (S,)
Proof ‘
By definition of predictive sufficiency VB € B}

P(B|B;) = P(B|S,) P qc. G

Let f, := P(B|S,). fn is a B, -martingale. By a limit theorem for martin-

gales (seé Dellacherie-Meyer, 1980) we have
P(B|B,) — P(B|B,) P q.c.

P(B|B,)(w) = P(B|By)(w)

13



for every w € G(B)° where G(B) € B(X*) and P(G(B)) = 0. By separabil-
ity of X it can be proved the existence of a set G ¢ B(X‘x’) with P(G) =0
such that

P(B|B;)(w) = P(B|B)(w) (7)

for every w € G and for every B € B;.

Taking the limsup on both sides of (6) we have, from (7)
P(B|B,,) = limsup,P(B|S,) q.c. VB¢ Bf
Therefore P(B{B;,) is Sp-measurable and P(B|By) = P(B|Sy). &

We now investigate the connections between predictive, Bayesian and Fisher’s
classical sufficiency in terms of o-fields. It is simple to verify in terms of o-
fields, the results proved for statistics by Fortini, Ladelli and Regazzini (1998,
2000). So we omit the proofs of the following theorems which can be easily

obtained by the results of Fortini, Ladelli and Regazzini.

Definition 21 A sub-o-field S, of B is said to be a Bayesian sufficient
o-field w.r.t. P if there is a r.c.p.d. of p given S, w.r.t. P, say Q.. %, such
that @.,(-,C) is a version of P{p € C|B;} for every C € B(M).

Definition 22 Let (Q, F) be a measurable space. A sub-o-field & C F s
said to be a classical sufficient o-field for an arbitrary class P of probability

measures on (2, F) if, for every A € F, there exists a common VETSION of

3By definition Q,, : X x B(M)) — [0,1] is such that
(i) Yw € B(X®) @, (w,) is a probability measure on (M, B(M))

(i) YC € BIM) Q,(-,C) is a version of P{p € C|Sn}
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the conditional probabilities P(A|S) VP € P.

If Q 1s a Polish space, S is said to be a classical sufficient o-field if all P € P
have a common conditional distribution relative to S; in other words, if for
each w € Q, there ezists a probability measure Q(w,-) on F such that, for
each A, Q(-, A) is F-measurable and

P(A|S)=Q(-,A) as P foradl PeP

The following theorem states that predictive sufficiency is the same of Bayesian

sufficiency.

Theorem 23 Let the sequence y = (Yn)n>1 of coordinate r.v.’s of X* be
exchangeable w.r.t. P. Then, w.r.t. P, &, is a Bayesian sufficient o-field if,
and only if, it is a predictive sufficient o-field.

We obtain, when P is exchangeable, the equivalence between classical suffi-

ciency and predictive sufficiency.

Theorem 24 Let P be an exchangeable probability measure on (X*°, B(X*))
and let S, be a predictive sufficient o-field w.r.t. P. Then there is a set N in
B(M) with v(N) =0 [v is the de Finetti measure] such that S, is a classical
sufficient o-field for P = {p";p € N}, in other words yi,) have a common

r.c.p.d. relatively to S, w.r.t. p*°, for every p € N°¢

Theorem 25 Let the sequence y of coordinate r.v.’s of X* be ezchangeable
w.r.t. P. Moreover, let S, be a classical sufficient o-field for P = {p™;p €
N¢}, where N € B(M) with v(N) = 0. Then S, is a predictive sufficient
o-field w.r.t. P.
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5 Predictive ancillarity

The concepts of sufficiency and ancillarity are complementary. If the rest of
data is discarded, a predictive sufficient o-field retains all the information
about the past which is needed to determine the probability of future events
in Bf. A predictive ancillary o-field contains no information about future

events.

Definition 26 A sub-o-field X, of B, 1s said to be predictive ancillary if
B;"HES, e, P{B|E,] =P{B) YBe B

It easy to verify the following properties:
e All sub-o-fields of B, which are smaller than X, are predictive ancillary.

‘e If X, is predictive ancillary and X; C A, then A is predictive ancillary.
(see Mouchart and Rolin, 1984; corollary 2.6)

Definition 27 A sub-o-field ¥, of B, is satd to be mazimal predictive an-

cillary if
i) L is predictive ancillary

i) if H predictive ancillary and £, C H then £, =H

6 Completeness in a predictive approach

In a predictive approach, the analogous of the concept of completeness is the

concept of strong identifiability.
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Definition 28 A predictive sufficient o-field S, is said to be complete if S,
is strongly identified by BT, i.e. if

VXY € BT (8 : BIAX)B ] =0 as. = HX) =D ns (8)
S, 1is said to be boundedly complete if (8) holds for all bounded f.

Lehmann and Scheffé (1950) proved that if a sufficient statistic is bound-
edly complete, then it is a minimal sufficient statistic. Basu and Pereira
(1983) propose a Bayesian version of this result. The proposition below is a

predictive version of this result.

Theorem 29 Suppose S, is a complete predictive sufficient o-field. Then S,
is a minimal predictive sufficient o-field, i.e. S5 = Ps.

Proof

By assumption S, is strongly identified by B. Then S, is weakly identified
by B; (Corollary 11). Then from Theorem 17 we have S; = P;.

7 Basu’s theorems in a completely predictive
approach
Consider the following three propositions:
(a) S, is predictive sufficient o-field.
(b) ¥ is a predictive ancillary o-field.

(¢) Is and &; are conditional independent given B
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In the classical sampling approach (Basu, 1955, 1958) speculates under what
conditions two of three relations (a), (b), (¢) imply the third. This problem
is studied in the traditional Bayesian approach by Basu and Pereira (1983)
and by Florens, Mouchart e Rolin (1990). In this section we study Basu'’s

theorems under the completely predictive approach.

Proposition 30 (Theorem one of Basu (1955))

Suppose S, is a complete predictive sufficient o-field and s a predictive an-
cillary o-field. Then %S| B5 .

Proof

Since by assumption Bf||B;|S, and £, C By, we get Bf[|%|S;, Le. Vz
¥ ,-measurable

E(z|Bf v S,) = E(z|S;) as. (9)

Furthermore Bf ||S, = E(z|B]) = E(z) a.s., so, from the properties of the
conditional expectation, E[E(z|S;) — E(z)|B]] = 0 a.s. Since &; << B, we
get

E(z|S;) = E(z) as. Vz X,-measurable - (10)

(9) and (10)== E(z|B; VS;) = E(z) a.s. Y& T,-measurable, i.e. S||Z,|B;.0

Basu (1955) stated that any statistic independent of a sufficient statistic is
ancillary. Later on Basu (1958) presented a counter example and recognized
the necessity of an additional condition on the parametric family of probabil-
ity measures on the sampling space. Koehn and Thomas (1975) strengthened
this result by introducing a necessary and sufficient condition on the family.
A Bayesian version of the Koehn and Thomas’s theorem is contained in Basu

and Pereira (1983) and in Mouchart and Rolin (1984).
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The following theorem is a completely predictive version of the result of

Koehn and Thomas.

Theorem 31 (Theorem two of Basu, 1955)

Let S, a predictive sufficient o-field. Then Bf and S, are measurably sep-
arated (i.e. BF||Ss) if and only if for any sub-o-field X; of BT such that
83_||_'23|Bj, we have that ¥, is ancillary (i.e. EsﬂBj).

Proof

(Sufficiency) By hypothesis S; predictive sufficient o-field. For any £, C B},

then we get

s || B 1S (11)

Furthermore by hypothesis

By ||Ss (12)
The conditions (11) and (12) imply S| (B VSs) (B NSs) (see Dawid, 1979).
From the definition of separable measurability By NS, = Fo, 50 Esu(Bj‘VSs).
Finally Bf C (Bf vS;) = L,[|B;.
(Necessity) Let &, = Bf N S,;. Obviously % C S, € B;. Furthermore
5,5:|BY. Tndeed VA € £, VB € 5, we have P(ANBIB;) = E(IuI3|B}) =
= IgEB(I4|Bf) = P(A|Bf)P(B|Bf). Then by hypothesis we have |85
But X, C B by construction. Therefore EsﬂEs and this is the same as to

state =y = Fp.¢

8 Basu’s results on maximal ancillarity

In this section we extend Basu’s results (1955, 1959) which identify maximal

ancillarity as complementary to complete sufficiency. All the definitions of
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previous sections may be easily generalized by introducing a conditioning
o-field to each relation stated.

Let M sub-o-field of F.

Definition 32 A sub-o-field S, of By is said to be predictive sufficient con-

ditionally on M if
B ||1BJ1(Ss v M)

Definition 33 A sub-o-field ¥ of By is said to be predictive ancillary con-
ditionally on M if
By ||Zs|M

Definition 34 A predictive sufficient o-field S, is said to be complete con-

ditionally on M if
S, << Bf|M

The theorems in the following extend the Basu’s results (1955;1959) in a
predictive approach. For similar results in the traditional Bayesian approach

cf. Lloyd (1988), Mouchart and Rolin(1989), Florens, Mouchart and Rolin
(1990).

Theorem 35 Let S, complete predictive sufficient conditionally on M. Let
5, predictive ancillary conditionally on M. Then S;||Z5|M
Proof

Since £, C B; and S; is predictive sufficient conditionally on M, we have
E(W|MV B VS)=EW|MVS,) as. VW I; —measurable (13)
Since ¥, is predictive ancillary conditionally on M, we have
E(W|MV BY) = E(W|M) as. VW I, —measurable (14)
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(13) and (14), together with Bf C M Vv B} v S;, imply

E[EW|MV S,) = E(W|M)|(B v M)| =
= E[E(W|MV B} v 8,)|(Bf v M)| — E[E(W|M vV B})
= E(W|B v M) — E(W|Bf v M)=0 as.

(Bf vM)| =

We observe now that {E(W|M V S;) — E(W|M)} is a random variable
(M V 8;)-measurable and, being, by hypothesis, S, << Bf | M, we get

EW|MVS;) = E(W|M) as. YW X, — measurable

ie.

IREARY
2

The theorem 3 of Basu (1959) states that to give the whole sample is the
same as to give an ancillary statistic and a complete sufficient statistic, then
this ancillary statistic is maximal ancillary. The following theorem represents

a predictive version of Basu’s result.

Theorem 36 Let ¥, a predictive ancillary o-field and §; a complete predic-
tie sufficient o-field conditionally on ¥s. Furthermore suppose S;VE; = By .
Then %, is mazimal predictive ancillary.

Proof
Suppose that G is a predictive ancillary o-field, such that X; C G. Then it

easy to prove that G is predictive ancillary conditionally on X, (see Mouchart

and Rolin, 1984; Corollary 2.6 (ii)). From the Theorem 35 we have

5,61,
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l.e.

E(X|Z,) = E(X|Z;VS;) as. VX G-measurable

Since S, V ¥; = B, we have
E(X|Z;) = E(X|B;) as. VX G-measurable (15)
By definition of ancillarity G C B; . Therefore (15) becomes
E(X|Z;) = X as. VX G-measurable (16)
(16) implies G C ;. Therefore X; is maximal predictive ancillary.{

Theorem 37 Let ¥, and S, two independent o-field, such that S;VE; = B; .
Then ¥ is mazimal among o-field independent of Ss, contained in B .
Proof

Let G a o-field independent of Sy such that ¥; C G. Then G||S,|Z; (see
Mouchart and Rolin (1984); Corollary 2.6 (ii)), i.e.

E(X|Z,) = E(X|E; VvV S;) as. VX G-measurable
Since S; VX, = B, e G C B, we have

E(X|Z;) = E(X|B;) =X as. VX G-measurable (17)
From (17) it follows that G C X,. Therefore ¥, is maximal.{

Corollary 38 Let X a predictive ancillary o-field and S a minimal predic-
twe sufficient o-field, but not necessarily complete. Suppose S; V I, = B; .

Then %, is mazimal predictive ancillary among o-field independent of S,.
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