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Summary. In recent years, Bayesian nonparametric inference, both theoretical and computational,
has witnessed considerable advances. However, these advances have not received a full criti-
cal and comparative analysis of their scope, impact and limitations in statistical modelling; many
aspects of the theory and methods remain a mystery to practitioners and many open questions
remain. In this paper, we discuss and illustrate the rich modelling and analytic possibilities that are
available to the statistician within the Bayesian nonparametric and/or semiparametric framework.
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1. Introduction

1.1. Why nonparametrics?
Obviously the answer depends on the particular problem and procedures under considera-
tion, but many, if not most, statisticians appear to feel that it is desirable in many contexts to
make fewer assumptions about the underlying populations from which the data are obtained
than are required for a parametric analysis.

Common population distributions, such as the normal and Weibull distributions, force
certain assumptions concerning the underlying population: in particular, the assumptions of
unimodality and an implicit inability to model population moments higher than the ®rst
two. Few statisticians would argue that this is su�cient for the analysis of complex data
sets. One possibility is to search for more ¯exible parametric population distributions: for
example, the exponential power and Student t-families have been proposed as generalizations
of the normal family in Bayesian robustness studies. However, these families do not cover
departures from symmetry.
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Another possibility is to turn to ®nite mixture distributions (Titterington et al., 1985).
Analyses involving such mixtures have recently received increased attention because of the
advances made in simulation-based approaches to making inference (see, for example,
Richardson and Green (1997) and the references cited in their paper), particularly in the
Bayesian framework. Essentially, priors are constructed on a larger class of population
distributions, achieved via the introduction of a larger number of parameters. The problem of
working with mixtures where the number of components is taken to be unknown (random)
was previously tackled by Escobar and West (1995) using `Bayesian nonparametrics', basing
the prior on the Dirichlet process.

Classical nonparametric and semiparametric methods have a measure of popularity, e.g. the
Kaplan±Meier estimator, kernel density estimation and Cox regression. No population distri-
butional assumptions are made in any of these cases, except for the proportional hazards
assumption in the case of Cox regression. We argue that a state of no knowledge at all is hardly,
if ever, realistic: we would typically at least have some ideas concerning location and spread.
Such information can be incorporated into a Bayesian nonparametric prior. Even if there really
is no information of worth, we can still construct relatively uninformative nonparametric priors,
in which case inference should mimic classical nonparametric results. An example of this is the
(Bayesian) nonparametric generalization of the Kaplan±Meier estimator.

Motivated by the success of the Dirichlet process prior in the important problem of a `random
number of component mixture distributions', the present paper is concerned with looking at
alternative nonparametric priors (which generalize the Dirichlet process) and seeking to use
them in some important areas in statistics. Bayesian nonparametric models are constructed on
`large' spaces to provide support for more eventualities than are supported by a parametric
model. Technically, (to many) the o�-putting aspect of the Bayesian nonparametric frame-
work is the mathematical apparatus that is required for specifying distributions on function
spaces and for carrying through prior-to-posterior calculations. A further pragmatic concern
is how to incorporate real qualitative prior knowledge into this mathematical framework. A
major emphasis of this paper will therefore be an attempt to address these issues and to
provide detailed illustrative analyses. These will demonstrate both the modelling ¯exibility of
this framework and the ease, through tailored simulation methodology, with which prior-to-
posterior analysis can be implemented.

The earliest priors for nonparametric problems seem to have been described by Freedman
(1963) who introduced tail-free and Dirichlet random measures. Subsequently, Dubins and
Freedman (1965), Fabius (1964), Freedman (1965) and Ferguson (1973, 1974) formalized and
explored the notion of a Dirichlet process. Early work was largely focused on stylized
summary estimates and tests so that comparisons with the corresponding frequentist pro-
cedures could be made. Since Ferguson (1973) the nonparametric Bayesian literature has
grown rapidly. The current focus of attention is on full Bayesian analyses of nonparametric
models by using simulation techniques (apparently ®rst used in this context by Escobar
(1988)). In this paper, we shall focus on nonparametric inference for random distributions
and related functions. We shall not deal with Bayesian nonparametric or semiparametric
density estimation; for a recent survey of this ®eld, see Hjort (1996). Nor shall we deal with
Bayesian nonparametric regression, using, for example, random functions generated by ran-
dom coe�cients for a set of bases functions (see, for example, Denison et al. (1998)). A recent
collectionofBayesiannonparametric and semiparametric papers canbe found inDey et al. (1998).

1.2. Outline of the paper
The paper is organized as follows. In Section 2 we summarize the fundamental `Bayesian
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nonparametric theorem'. In Section 2.1 we review the well-known Dirichlet process prior and
in Section 2.2 we motivate the use of more general priors. Detailed descriptions of these more
general priors will be the focus in Sections 3 (stochastic process priors), 4 (partition model
priors) and 5 (exchangeable model priors). In particular, in the context of reliability and fail-
ure time data, interest often centres on the hazard rate and/or survival curve of the process
under investigation. In Section 3.4 we consider Bayesian nonparametric survival data models,
providing estimators which generalize the classical Kaplan and Meier (1958) nonparametric
estimator. Also in Section 3.4 we consider Bayesian semiparametric approaches for the pro-
portional hazards model (Cox, 1972). In Section 4.4 we consider an accelerated failure time
model and frailty models (Clayton and Cuzick, 1985). In Section 5.4, we consider a three-
state disease process model.

All the examples presented in the paper involve the analysis of data, previously studied
under assumptions that are di�erent from those made by us. Every analysis depends on
assumptions about the relevant unknown function (a probability distribution or related func-
tion for the examples considered in this paper). In a Bayesian nonparametric approach we
can ensure that the ®rst two moments of the unknown function match those derived from a
parametric model; see, for example, Section 3.2. This e�ectively creates a region in which the
function is thought to be located which is the same for both parametric and nonparametric
cases. The di�erence is that in the parametric case the shape of the unknown function is
restricted whereas in the nonparametric case it is not.

2. General framework

We assume that Y1, Y2, . . ., de®ned on some space 
, is a sequence of independent and
identically distributed (IID) observations from some unknown probability distribution F,
assumed to be random and assigned a prior distribution P
. In a parametric framework, F
is assumed to be characterized by a ®nite dimensional unknown parameter �. The prior is
then assigned to �, and we write P
 as P�. If we eschew the ®nite dimensional assumptions
we enter the realms of Bayesian nonparametrics. However, if we think of the nonparametric
model P
 as arising from a wish to weaken a posited parametric assumption P�, we can
construct a P
 `centred', in some sense, on P�.

The following provides the key mathematical basis for Bayesian nonparametric con-
structions.

Theorem 1 (Ferguson, 1973; Doksum, 1974; Dalal, 1978). Let �
, B� be a measurable space
and let a system of ®nite dimensional distributions for

�F �B1,1 �, . . ., F �Bm,k��
be given for each ®nite class �B1,1, . . ., Bm,k� of pairwise disjoint sets from B. If

(a) F �B� is a random variable on �0, 1� for all B 2 B,
(b) F �
� � 1 almost surely and
(c)

�F �[i B1,i�, . . ., F �[i Bm,i �� �d
�P

i

F �B1,i�, . . .,
P
i

F �Bm,i�
�

(here �d denotes equality in distribution), then there is a unique probability measure P
 on
the space of probability measures on �
, B� yielding these ®nite dimensional distributions.
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An important seminal version of a nonparametric prior is the Dirichlet process (Ferguson,
1973, 1974), arising when the ®nite dimensional distributions are Dirichlet distributions. It
turns out that this process has several de®ciencies, but since all our nonparametric priors are
generalizations of the Dirichlet process we begin by providing a brief review.

2.1. The Dirichlet process
The Dirichlet process `generates' discrete random probability measures. The parameters of the
Dirichlet process prior can be chosen so that the expected probability measure is arbitrary,
say F0. The other parameter is a scalar quantity c > 0, commonly interpreted as controlling
the variability of the random probability measures F about F0. We write F � D�cF0� and the
®nite dimensional distribution for a measurable partition �B1, . . ., Bk� is

Dirichletfc F0�B1�, . . ., c F0�Bk�g:
An immediate di�cult question is whether the `simple' Dirichlet distribution is useful bearing
in mind that it assigns negative correlation between F �Bj � and F �Bl� for all j 6� l, which is
counter-intuitive.

A further unsatisfactory aspect of the Dirichlet process is the role played by c. There is
no clear interpretation for this parameter, owing to its dual aspect, controlling both the
smoothness (or discreteness) of the random distributions and the size of the neighbourhood
(or variability) of F about F0. To illustrate this, we note that if F � D�cF0� then, for any
event A,

varfF �A�g � F0�A� f1ÿ F0�A�g
c� 1

:

For maximum variability we would want c! 0. However, Sethuraman and Tiwari (1982)
pointed out that, as c! 0, F converges in distribution to a single atomic random measure.
Also, note from the expression for the variance of F �A� that it is not possible to specify
var �F � arbitrarily, and that the shape is determined by F0.

Bayesian inference via the Dirichlet process is attractively straightforward. Given the data
(in the form of an IID sample of exact observations), the posterior is once again a Dirichlet
process. The prior-to-posterior parameter updates are c! c� n and

F0 ! �cF0 � nFn�=�c� n�,
where Fn is the empirical distribution function of the observations. The naõÈ ve interpretation
of c as a prior sample size presumably derives from the forms of these posterior parameters.
But does a c � 0 correspond to `no information'? If c � 0, we note that the Bayes estimate
for F, with respect to quadratic loss, is given by Fn which is the classical nonparametric
frequentist estimator. Therefore, c � 0 ®ts in with one of the notions of a non-informative
prior discussed by Ghosh and Mukerjee (1992). Note, also, that a Dirichlet posterior under a
c � 0 speci®cation has the parameter nFn which is the basis for Rubin's Bayesian bootstrap
(Rubin, 1981).

An alternative notion considered by Ghosh and Mukerjee (1992) is that of `information'.
Under this notion, c � 0 can de®nitely not be thought of as providing a `non-informative'
prior. As mentioned earlier, as c! 0, F converges to a single atomic measure, which is strong
information about the discreteness of F.

Although an experimenter may not be able to formulate a parametric model for F, he or
she may have information concerning the mean and variance of F, � and �2 respectively
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(obviously assuming that they exist). If priors can be allocated for these parameters then
coherent speci®cations for the Dirichlet prior involve c � E ��2�=var���, E �Y0� � E ��� and
var�Y0� � E ��2� � var���, where Y0 � F0. Antoniak (1974) considered a larger class of priors
based on the Dirichlet process in which priors are assigned to c and the parameters of the
parametric distribution F0.

2.1.1. Mixture of Dirichlet process model
As mentioned earlier, one problem with the Dirichlet process is that it assigns probability 1 to
the space of discrete probability measures. A class of priors that chooses a continuous F with
probability 1 is the mixture of Dirichlet process (MDP) model, which we now brie¯y discuss.

MDP models are essentially Bayesian hierarchical models, one of the simplest versions
taking the form considered by Lo (1984):

Yij�i � f �.j�i �, i � 1, . . ., n,

�1, . . ., �njF �IID F and F � D�cF0�:
Instead of the �is being assumed to be IID from some parametric distribution (as with
standard Bayesian hierarchical models) greater ¯exibility is allowed via the introduction of
the Dirichlet prior centred on a parametric distribution. For applications of MDP models,
see, for example, Escobar (1994), Escobar and West (1995), West et al. (1994), Mueller et al.
(1996), Bush and MacEachern (1996) and MacEachern and Mueller (1998), in which priors
are also assigned to c and the parameters of F0.

MDP models have largely dominated the Bayesian nonparametric literature recently as a
consequence of the realization that full posterior computation is feasible by using simulation
methods (Escobar, 1994), although these can be very computer intensive and involve non-
trivial sampling algorithms (particularly when f �.j�� and F0��� form a non-conjugate pair).
The MDP model provides a continuous nonparametric prior for the distribution of the Yis.
Constructively, if F � D�cF0�,

F �P1
j�1

Vj ��j

(Sethuraman and Tiwari, 1982; Sethuraman, 1994), where �� is the measure with mass 1 at �,
leading to

Yi �IID
P1
j�1

Vj f �.j�j�,

whereVj �Wj �1ÿWjÿ1� . . . �1ÿW1�,Wj �IID beta �1, c� and �j �IID F0. This mixture model
has been successfully exploited by Escobar and West (1995) and others. A further use of the
constructive de®nition of the Dirichlet process is given by Doss (1995).

2.2. Beyond the Dirichlet process
As was noted in Section 2.1, there are limitations with the Dirichlet process when it comes to
prior speci®cations and their interpretation. In the rest of the paper, we focus on general-
izations of the Dirichlet prior which overcome these di�culties. There are several ways of
constructing a nonparametric prior to meet the requirements of theorem 1.
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2.2.1. Stochastic processes
The stochastic process approach is particularly appropriate for generating random cumu-
lative density functions on �0,1� with application in survival data models. An important and
rich class of priors is provided by neutral to the right (NTTR) processes (Doksum, 1974),
where the distribution function is represented in the form F �t� � 1ÿ expfÿZ �t�g, where Z is
an independent increments (LeÂ vy) process on �0,1�, with Z �0� � 0 and limt!1fZ �t�g � 1.
We shall illustrate this approach in Section 3.4 with the analysis of the well-known Kaplan
and Meier (1958) data set.

2.2.2. Partitioning
In partitioning we construct a binary tree partition of 
 denoted by � � f�B� �g, where � is a
binary sequence which `places' B� in the tree. At level 1 in the partitioning process, we have
sets B0 and B1 such that B0 \ B1 �1 and B0 [ B1 � 
. Then, at level 2, B0 `splits' into B00

and B01 and so on. A probability distribution is assigned to fF �B� �g such that, for all �,
F �B�0� � F �B�1� � F �B� �5 0 and F �
� � 1. This is the idea behind PoÂ lya trees (Ferguson,
1974; Lavine, 1992, 1994; Mauldin et al., 1992). Such priors seem particularly appropriate for
error models, either at the ®rst or second stage in a hierarchical model, because it is easy to ®x
the location (median) of a random PoÂ lya tree distribution. An application considered later in
Section 4.4 includes an accelerated failure time model.

2.2.3. Exchangeability
Rather than constructing F directly, as in the stochastic process and partitioning approaches,
here we rely on the representation theorem (de Finetti, 1937) for a sequence of exchangeable
random variables de®ned on 
. Such an approach seems particularly appropriate when the
problem is one of prediction, i.e. in providing the distribution of Yn�1 given Y1, . . ., Yn. We
illustrate this approach in Section 5.2 with an application involving modelling a multiple-
state disease process.

Each of these approaches will now be considered separately in detail (although they are by
no means mutually exclusive: for example, the Dirichlet process has a representation under
all three approaches).

3. Stochastic processes

3.1. Neutral to the right process
We begin by discussing NTTR processes. Many well-known processes, such as the gamma
and simple homogeneous processes (Ferguson and Phadia, 1979) and the Dirichlet process
(Ferguson, 1973, 1974) belong to this class. More recently, an NTTR process called the beta-
Stacy process was developed by Walker and Muliere (1997). Detailed background to the
following discussion can be found in LeÂ vy (1936), Ferguson (1973, 1974), Doksum (1974) and
Ferguson and Phadia (1979).

A non-decreasing almost surely, right continuous almost surely, process Z �t�, with in-
dependent increments, is called an NTTR LeÂ vy process if it satis®es

(a) Z �0� � 0 almost surely and
(b) limt!1fZ �t�g � 1 almost surely.

Z �t� has at most countably many ®xed points of discontinuity. If t1, t2 , . . . correspond to the
®xed points of discontinuity having independent jumps W1, W2 . . . then the di�erence
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Zc�t� � Z �t� ÿP
j

Wj I �tj ,1��t�,

where I�.� is the indicator function, is a non-decreasing, independent increments process
without ®xed points of discontinuity. Hence, every NTTR process can be written as the sum
of a jump component and a continuous component. This will be useful when we later address
the problem of generating random variates from an NTTR process. In short, a random
distribution function F �t� on the real line is NTTR if it can be expressed as

F �t� � 1ÿ expfÿZ �t�g,
where Z �t� is an NTTR LeÂ vy process. We shall concentrate on the beta-Stacy process (Walker
and Muliere, 1997) which generalizes the Dirichlet process and the simple homogeneous pro-
cess. The LeÂ vy measure for the beta-Stacy process is given by

dNt�z� �
dz

1ÿ exp�ÿz�
�t
0

expfÿz��s�g d��s�,

for appropriate functions ��.� and ��.�.

3.2. Prior speci®cations
Ferguson and Phadia (1979) pointed out that for the NTTR processes which they considered,
such as the gamma, simple homogeneous and Dirichlet processes, interpreting the prior
parameters is quite di�cult. Walker and Damien (1998) provide a way of specifying the mean
and variance of the distribution function based on the beta-Stacy process. This method has
the merit that the practitioner can model the prior mean and variance via a Bayesian para-
metric model, i.e. we can ®nd a beta-Stacy process to satisfy

ÿ logfE �S�t��g � ��t� and ÿ logfE �S 2�t��g � ��t�,
where S�t� � 1ÿ F �t�, for arbitrary � and �, satisfying � < � < 2�, a consequence of the
inequality E �S �2 < E �S 2 � < E �S �. The parameters of the beta-Stacy process are given by

��t� � f��t� ÿ 1g=f2ÿ ��t�g
and d��t� � ��t� d��t�, where � � d�=d�. We obtain the Dirichlet process when ��t� �
��t, 1� and we obtain the simple homogeneous process when � is a constant. The in-
®nitesimal jumps of the beta-Stacy process follow a generalized Dirichlet distribution
(Connor and Mosimann, 1969). With the constraint ��t� � ��t,1� the generalized Dirichlet
becomes a Dirichlet distribution. These special cases might be seen as a desire to have dNt�z�
in closed form.

One way to provide a � and � is via a Bayesian parametric model. Suppose, for example,
that we wish to match the nonparametric model, up to and including second moments, with
the parametric exponential±gamma model, i.e. S�t� � exp�ÿat� with a � ga� p, q�. Then we
would have ��t� � p log�1� t=q� and ��t� � p log�1� 2t=q�. This method of specifying the
prior mean and variance of the distribution function overcomes the di�culties in inter-
pretation that were identi®ed by Ferguson and Phadia (1979). In the absence of alternative
strong prior information, this provides a ¯exible form of prior speci®cation. We can specify a
p and q to re¯ect beliefs concerning the `likely' position of S, i.e. a region of high probability
in which S is thought most likely to be. The unrestricted nature of the prior will then allow S
to `®nd' its correct shape within this speci®ed region, given su�cient data. Further examples
are given in Walker and Damien (1998).
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3.3. Posterior distributions
The following establishes a key `conjugacy' property of NTTR processes.

Theorem 2 (Doksum, 1974; Ferguson, 1974). If F is NTTR and there is a random sample
from F, some of which may be right censored, then the posterior distribution of F is NTTR.

If F is a beta-Stacy process with parameters � and � then, given an IID sample from F,
and/or possible right censoring, the posterior process is also beta-Stacy. The Dirichlet process
is not conjugate with respect to right-censored data, and if the prior process is Dirichlet the
posterior, given the presence of censored data, is beta-Stacy. The Bayes estimate for F, with
respect to a quadratic loss function, is given by

F̂ �t� � 1ÿ Q
�0,t�

�
1ÿ d��s� � dN�s�

��s� �M�s�
�
,

where N�t� � �i I �Yi 4 t�, M�t� � �i I�Yi 5 t� and ��0,t� represents a product integral (Gill
and Johansen, 1990). This estimator was ®rst obtained by Hjort (1990). The estimator F̂ pro-
vides the parameter update explicitly. The Kaplan±Meier estimate is obtained as �, � ! 0,
which is also the basis for both the censored data Bayesian bootstrap (Lo, 1993) and the ®nite
population censored data Bayesian bootstrap (Muliere and Walker, 1998).

The remaining key question is whether prior-to-posterior calculations for these models are
computationally feasible. The posterior NTTR process Z splits into two independent parts: a
set of ®xed points of discontinuity, which occur where the uncensored observations occur,
and a LeÂ vy process without ®xed points of discontinuity, Zc. The LeÂ vy measure for Zc is the
same as for the prior except that � is replaced by � �M. We can write

Z�t� � P
Yi uncensored

WYi
I�Yi 4 t� � Zc�t�,

where the jumps WYi
are described in detail below. From a simulation perspective it is su�-

cient to generate random variates from these two components separately and independently.

3.3.1. Simulating the jump component
With respect to a beta-Stacy process, let Wy denote the jump random variable corresponding
to an uncensored observation at y. The density function for Wy is given by

f �w� / f1ÿ exp�ÿw�gNf ygÿ1 exp�ÿw ���y� �M�y� ÿNfyg� �,
so that Wy �dÿlog�1ÿ By�, where By � beta �Nfyg, ��y� �M�y� ÿNfyg �. See Walker and
Muliere (1997). If Nfyg � 1 then Wy has an exponential density with mean value f��y�
�M�y� ÿ 1gÿ1. Simulating the jump component is thus straightforward.

3.3.2. Simulating the continuous component
It is well known (Ferguson, 1974; Damien et al., 1995) that Zc�t� will have an in®nitely
divisible (ID) distribution. Bondesson (1982), Damien et al. (1995) and Walker and Damien
(1998) have developed algorithms to generate random variates from a large class of ID
distributions. The particular choice of the algorithm might depend on the posterior process
under consideration. Thus, Laud et al. (1996) used the Bondesson algorithm to simulate the
extended gamma process; the algorithm of Damien et al. (1995) is exempli®ed for the
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Dirichlet, gamma and the simple homogeneous processes; Walker and Damien (1998)
provide a full Bayesian analysis for the beta-Stacy process using a hybrid of algorithms,
based on an idea in Bondesson (1982). Wolpert and Ickstadt (1998) provide an algorithm for
sampling the entire LeÂ vy process; see also Ferguson and Klass (1972). For the illustrative
analyses that involve NTTR processes, we shall use the Walker and Damien method.

3.4. Example
We reanalyse the data set of Kaplan andMeier (1958), partly for its historical signi®cance, but
mainly because it has been studied extensively in recent Bayesian literature and thus provides a
basis for comparing di�erent methods and models. The data consist of exact observed failures
at 0.8, 3.1, 5.4 and 9.2 months, and censored observations at 1.0, 2.7, 7.0 and 12.1 months. For
illustration, we address the problem of estimating the probability of failure before 1 month,
i.e. F �0, 1�. Whereas Susarla and Van Ryzin (1976) and Ferguson and Phadia (1979) could
only obtain Bayesian point estimates, we can sample from the full posterior distribution.
Also, we can sample from the posterior distribution of F �0, t� for any t and can therefore
construct a full picture of the posterior failure time distribution. We follow Ferguson and
Phadia (1979) and, within the beta-Stacy framework, take ��s� � exp�ÿ0:1s� and

d��s� � 0:1 exp�ÿ0:1s� ds,
to provide correspondence with the prior used by them. The prior is actually a Dirichlet
process but, with censored observations in the data set, the posterior is a beta-Stacy process.
We assume that there are no jumps in the prior process. Now

F �0, 1� � 1ÿ expfÿZ�0, 1�g � 1ÿ expfÿZc�0, 0:8� ÿW0:8 ÿ Zc�0:8, 1�g:
Therefore, we need to sample W0:8, an exponential random variable with mean fexp�ÿ0:08�
� 7gÿ1, and Zc�0, 0:8� and Zc�0:8, 1�, for which we use the algorithm described in Walker
and Damien (1998). This algorithm involves sampling a Poisson process, based on

Zc�t� �d
�
s dPt�s�,

where Pt is the Poisson process which has intensity the posterior LeÂ vy measure.
We collected 10000 samples from the posterior and the resulting histogram representation

is given in Fig. 1. The mean value is given by 0.12 which is the (exact) point estimate value
obtained by Ferguson and Phadia (1979).

It can be argued that the prior used in this illustrative analysis seems somewhat informative.
Can we recapture the same shape by using the ¯exible, less informative prior that we pro-
posed in Section 3.2? To investigate this, we reanalyse the data set by using the Bayesian
parametric model described in Section 3.2 with p � q � 1, in an attempt to be `relatively non-
informative'. This corresponds to ��t� � 1=2t and

d��t� � dt=2t�1� t�:
Again, we collected 10000 samples from the posterior and it turns out that the resulting
histogram representation is essentially indistinguishable from the histogram in Fig. 1 (we do
not include it).

It is of interest to see how our nonparametric analysis compares with a parametric
analysis using the parametric model on which it is centred. The posterior distribution from
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the parametric model is given by F �0, 1� � 1ÿ exp�ÿa� with a � ga�1� 4, 1� 41:3�. We can
construct this density analytically and it is shown as the curve in Fig. 1. The posterior
inferences are fundamentally di�erent, clearly showing the e�ects of the parametric
assumption.

So what does all this add up to? With the parametric model, the ®rst two moments de®ne
the shape of the posterior distribution. In the nonparametric model, the ®rst two moments
do not de®ne the shapeÐ there is considerably more ¯exibility in the model and the two
posteriors in Fig. 1 show very clearly the extent to which a parametric assumption can force
a posterior form. With the nonparametric approach, we note that the less informative
nonparametric prior leads to essentially the same result as the informative nonparametric
prior. This is typical. The signi®cant di�erences are between the parametric and nonparamet-
ric approaches, rather than between choices of prior within the nonparametric framework.

This example highlights a feature: we obtain similar posterior means for the two inferences
(0.12 for nonparametric and 0.11 for parametric), but with appropriately greater ranges of
uncertainty for the nonparametric approach (a standard deviation of 0.10 for nonparametric
and 0.05 for parametric), since the assumption of a particular parametric form with prob-
ability 1 is arti®cially suppressing one element of uncertainty.

What else can be done with the stochastic process approach? Kalb¯eisch (1978), Clayton
(1991) and Laud et al. (1998) have provided examples of the use of stochastic processes in the
context of Cox regression. It is also possible to use such processes to model functions other
than a distribution function. Hjort (1990) developed the beta process to model a cumulative
hazard function. Simulation algorithms for carrying out prior-to-posterior analysis for the
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beta process appear in Damien et al. (1996). We could alternatively use the Z-process
(described in Section 3.1) as a prior for the cumulative hazard function (Hjort used processes
of the type dA � 1ÿ exp�ÿdZ �). This approach was originally suggested by Laud (1977).
Wild and Kalb¯eisch (1981) considered the Cox regression model dZi�t� � dZ�t� exp�Xi��
and Walker et al. (1998) developed the idea to cover time-varying covariate models,

dZi �t� � dZ�t� expfXi �t�� g:
Even here, the analysis is not overcomplicated because each Zi remains a LeÂ vy process. In
particular, if Z is an extended gamma process (Dykstra and Laud, 1981) then so is each Zi.

Dykstra and Laud (1981) considered modelling monotone hazard rates nonparametrically by
using the extended gamma process. The advantage of this process is that it indexes the class
of absolutely continuous functions with probability 1. Laud et al. (1993, 1996) developed
simulation methods for the extended gamma process; Amman (1984) extended the hazard
rate process to model bathtub hazard rates. Arjas and Gasbarra (1994) developed processes
to model the hazard rate piecewise.

In practice, the stochastic process approach is only easy to use for relatively simple models
of the kind that we have illustrated. Sampling-based inference for more complex models
usually requires us to make some partitioning of the sample space, subsequently working
with a discrete version of the process. But this then suggests that we should construct the
prior on a partitioned space in the ®rst place and motivates the approach considered in the
next section.

4. Partitioning 


4.1. Po�lya tree priors
Detailed background to the material of this section can be found in Ferguson (1974), Lavine
(1992, 1994), Mauldin et al. (1992) and Muliere and Walker (1997). The PoÂ lya tree prior relies
on a binary tree partitioning of the space 
. There are two aspects to a PoÂ lya tree: a binary
tree partition of 
 and a non-negative parameter associated with each set in the binary
partition. The binary tree partition is given by � � fB� g where � is a binary sequence which
places the set B� in the tree. We denote the sets at level 1 by �B0, B1�, a measurable partition of

; we denote by �B00, B01� the `o�spring' of B0, so that B00, B01, B10 and B11 denote the sets at
level 2, and so on. The number of partitions at the mth level is 2m. In general, B� splits into
B�0 and B�1 where B�0 \ B�1 �1 and B�0 [ B�1 � B� . A helpful image is that of a particle
cascading through these partitions. It starts in 
 and moves into B0 with probability C0, or
into B1 with probability 1ÿ C0. In general, on entering B� the particle could either move into
B�0 or into B�1. Let it move into the former with probability C�0 and into the latter with
probability C�1 � 1ÿ C�0. For PoÂ lya trees, these probabilities are random and assumed to be
beta variables, �C�0, C�1� � beta���0, ��1� with non-negative ��0 and ��1. If we denote the
collection of �s by A � f�� g, a particular PoÂ lya tree distribution is completely de®ned by �
andA. The spot where our hypothetical particle lands is a random observation from the prior
predictive.

A random probability measure F on 
 is said to have a PoÂ lya tree distribution, or a PoÂ lya
tree prior, with parameters ��,A�, written F � PT��,A�, if there exist non-negative numbers
A � ��0, �1, �00, . . . ) and random variables C � �C0, C00, C10, . . . ) such that the following
hold:

(a) all the random variables in C are independent,
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(b) for every �, C�0 � beta���0, ��0� and
(c) for every m � 1, 2, . . . and every � � �1 . . . �m,

F �B�1: : : �m
� �

� Qm
j�1; �j�0

C�1: : : �jÿ10

� Qm
j�1; �j�1

�1ÿ C�1: : : �jÿ10�,

where the ®rst terms (i.e. for j � 1) are interpreted as C0 and 1ÿ C0.
A PoÂ lya tree prior can be set to assign probability 1 to continuous distributions, unlike the

Dirichlet process which has sample distribution functions which are discrete with probability
1. Additionally, the correlation structure between bins is more reasonable than it is with the
Dirichlet distribution.

4.2. Prior speci®cations and computational issues
Problems tackled in this paper involving PoÂ lya trees require simulating a random probability
measure F � PT��, A�. This is done by sampling C using the constructive form given in
Section 4.1. Since C is an in®nite set an approximate probability measure from PT��, A� is
sampled by terminating the process at a ®nite levelM. Let this ®nite set be denoted by CM and
denote by FM the resulting random measure constructed to level M (which Lavine (1992)
referred to as a `partially speci®ed PoÂ lya tree'). From the sampled variates of CM we de®ne FM

by F �B�1: : : �M
� for each � � �1 . . . �M . So, for example, if M � 8, we have a random distri-

bution which assigns random mass to r � 28 sets.
It is possible to centre the PoÂ lya tree prior, on a particular probability measure F0 on 
,

by taking the partitions to coincide with percentiles of F0 and then to take ��0 � ��1 for
each �. This involves setting B0 � �ÿ1, Fÿ10 � 12 ��, B1 � �Fÿ10 � 12 �, 1� and, at level m, setting,
for j � 1, . . ., 2m,

Bmj � �Fÿ10 f� jÿ 1�=2m g, Fÿ10 � j=2m��,

with Fÿ10 �0� � ÿ1 and Fÿ10 �1� � 1, where �Bmj : j � 1, . . ., 2m� correspond, in order, to the
2m partitions of level m. It is then straightforward to show that E �F �B� � � � F0�B� � for all �.

In practice, we may not wish to assign a separate �� for each �. It may be convenient to take
�� � cm whenever � de®nes a set at level m. For the top levels (m small) it is not necessary for
F �B�0� and F �B�1� to be `close'; on the contrary, a large amount of variability is desirable.
However, as we move down the levels (m large) we will increasingly wish F �B�0� and F �B�1� to
be close, if we believe in the underlying continuity of F. This can be achieved by allowing cm
to be small for small m and allowing cm to increase as m increases, choosing, for example,
cm � cm2 for some c > 0. According to Ferguson (1974), cm � m2 implies that F is absolutely
continuous with probability 1 and therefore according to Lavine (1992) this `would often be a
sensible canonical choice'. The Dirichlet process arises when cm � c=2m, which means that
cm ! 0 as m!1 (the wrong direction as far as the continuity of F is concerned) and F is
discrete with probability 1 (Blackwell, 1973). The model can be extended by assigning a prior
to c, but in the applications which follow we shall con®ne ourselves to providing illustrative
analyses corresponding to a speci®ed choice of c.

Another idea (our preferred choice) is to de®ne the �� to match EPT �F �B� �� and EPT �F 2�B� ��
with those obtained from a parametric model, based on the idea discussed in Section 3.2. If
the parametric model has likelihood F0�.; �� and prior ����, then we would assign
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��0 �
��0�s� ÿ s�0�
s�0�� ÿ s� ��0

and

��1 � ��0���=��0 ÿ 1�,
where �� �

�
F0�B� ; �� ���� d�, s� � v�=�� and v� �

�
F 2

0�B� ; �� ���� d�, with

�0 �
�0s0 ÿ �0

�0 ÿ s0

and

�1 � �0�1=�0 ÿ 1�:
If analytic expressions for these �� are not available, we can evaluate them via Monte Carlo
integration.

4.3. Posterior distributions
Consider a PoÂ lya tree prior PT��, A�. Given an observation Y1, the posterior PoÂ lya tree
distribution is easily obtained. Write �F jY1� � PT��, AjY1� with �AjY1� given by

��jY1 � �� � 1 if Y1 2 B�

�� otherwise.

�
If Y1 is observed exactly, then an � needs to be updated at each level, whereas in the case of
censored data (in one of the sets B� ) only a ®nite number require to be updated. For n
observations, let Y � �Y1, . . ., Yn�, with �AjY� given by ���jY� � �� � n� , where n� is the
number of observations in B� . Let q� � P �Yn�1 2 B�jY�, for some �, denote the posterior
predictive distribution, and let � � �1 . . . �m ; then, in the absence of censoring,

q� �
��1 � n�1

�0 � �1 � n

��1�2 � n�1�2
��10 � ��11 � n�1

. . .
��1: : : �m � n�1: : : �m

��1: : : �mÿ10 � ��1: : : �mÿ11 � n�1: : : �mÿ1
:

For censored data,

q� �
��1 � n�1

�0 � �1 � n
. . .

��1: : : �m � n�1...�m

��1: : : �mÿ10 � ��1: : : �mÿ11 � n�1: : : �mÿ1 ÿ s�1: : : �mÿ1
,

where s� is the number of observations censored in B�. So, if we can arrange for the censoring
sets to coincide with the partition sets, then we retain the conjugacy property of the PoÂ lya
tree; see, for example, Muliere and Walker (1997).

4.4. Examples
Our main example involves a linear regression model in the context of accelerated failure time
data.

4.4.1. Multiple-regression example
We consider the linear model

Yi � Xi� ��i, i � 1, . . ., n,

where Xi � �Xi,1, Xi,2, . . ., Xi,p � is a vector of known covariates, � is a vector of p unknown
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regression coe�cients and �i are error terms, assumed to be IID from some unknown
distribution F, taken to have a PoÂ lya tree prior. The parameter � is assigned a multivariate
normal prior with mean � and covariance matrix �. A priori, F and � will be taken to be
independent. Since F is completely arbitrary the intercept term of � will be confounded
with the location of F. This is easily overcome by ®xing the median of F by de®ning
F �B0� � F �B1� � 1

2
. If errors take values on the real line, we might typically want the median

to be located at 0 and this is achieved by taking the partition point at level 1 to be at 0. In
such cases it may be convenient to take F0 as the normal distribution with zero mean and
variance �2. This de®nes a median regression model instead of the more popular mean
regression model and parallels the frequentist approach of Ying et al. (1995). If required, we
could also ®x the scale of F by de®ning F �B00�, . . ., F �B11� each equal to 1

4
. This would be

appropriate for the alternative model

Yi � Xi� � ��i, i � 1, . . ., n,

where F0 could be taken to be the standard normal distribution.
We reanalyse the data set presented by Ying et al. (1995). This involves 121 patients su�ering

small cell lung cancer, each being assigned to one of two treatments: A with 62 patients; B with
59 patients. The survival times are given in days, with 98 patients providing exact survival times
and the remainder right-censored survival times. The covariates are the treatment type, coded 0
or 1, and the natural logarithm of the entry age of the patient. Ying et al. (1995) could only
estimate themedian survival time in their analysis and then test for the `better' treatment.We are
not restricted in any way about the type of inference that we can make.

In our analysis (an outline algorithm for which is provided in Appendix A.1) we took a
normal prior, with mean 0 and large variance term, for �. The parameters for the PoÂ lya tree
are F0, taken to be the normal distribution with zero mean and variance �2 � 102, and, for
simplicity, �� � cm2 whenever � de®nes a set at level m, with c � 0:1. We took the number of
levels of the PoÂ lya tree to be ®xed at 8. These speci®cations are chosen for illustration. A
more general approach would be to treat c, M and �2 as unknown parameters and to assign
prior distributions (though perhaps this is not necessary for M ). This is a relatively
straightforward idea to implement using the Yi � Xi� � ��i model.
For illustration, predictive survival curves are presented, the ®rst (Fig. 2) for new patients

receiving treatment A, and the second (Fig. 3) for new patients receiving treatment B. The
three curves selected for illustration are those for patients whose covariate values coincide
with the quartiles of the observed values of the log(entry age) covariate.

4.4.2. Frailty model example
Walker and Mallick (1997) detail the use of PoÂ lya trees in a frailty model (Clayton and
Cuzick, 1985). We omit the details and simply draw attention to the posterior estimate of the
log-frailty distribution obtained in that paper. In the analysis the frailties are (incorrectly)
assumed to be exchangeable and not dependent on a male±female covariate; Fig. 4 evidences
the great ¯exibility of the nonparametric framework in recovering a bimodal form for the
distribution of the log-frailties arising from the mixed male±female population.

5. Exchangeable models

Let Y1, Y2, . . . be an exchangeable sequence of random variables de®ned on 
. By de
Finetti's representation theorem (de Finetti, 1937), there exists a probability measure P
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de®ned on the space of probability measures on 
, such that the distribution of Y1, Y2, . . .
can be obtained by ®rst choosing F � P
 and then taking Y1, Y2, . . . jF �IID F, i.e.

P �Y1 2 B1, . . ., Yn 2 Bn� �
� �Qn

i�1
F �Bi�

�
dP
�F �:

Here P
 is referred to as the de Finetti or prior measure and, given the joint distribution of
Y1, Y2, . . ., this P
 is unique (Hewitt and Savage, 1955). An example is the general PoÂlya
urn scheme (Blackwell and MacQueen, 1973). Let c > 0 and F0 be a probability measure on

. The PoÂ lya urn scheme for generating the exchangeable sequence �Y1, . . ., Yn� from 
 is
given by

Y1 � F0,

Y2jY1 �
cF0 � �Y1

c� 1
,

..

.

YnjY1, . . ., Ynÿ1 �
cF0 �

Pnÿ1
j�1
�Yj

c� nÿ 1
:

Blackwell and McQueen (1973) showed that the de Finetti measure for the sequence is the
Dirichlet process. As might be expected from our earlier identi®cation of the beta-Stacy
process as a generalization of the Dirichlet process, a generalized PoÂ lya urn scheme can be
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Fig. 2. Predictive survival curves for three new patients with treatment A: data set of Ying et al. (1995)



obtained which has the discrete beta-Stacy process as the de Finetti measure (Walker and
Muliere, 1997).

There are several reasons why it is often convenient to consider the sequence Y1, Y2, . . .
directly, marginalizing over F. First, F is an in®nite dimensional parameter so the advantages
in removing this is that we work in a ®nite dimensional framework, making much of the
mathematics simpler. Secondly, interest is often in prediction and the distribution of Yn�1
given Y1, . . ., Yn is an immediate consequence. Thirdly, we are `closer' to the data in the
sense that we have the probability distribution for the data explicitly. Also the posterior
parameters for P
 can often be determined from the sequence of predictive distributions
(consider, for example, the PoÂ lya urn sequence).

5.1. Bernoulli trips
Here we introduce a simple concept and method, the Bernoulli trip (Walker, 1998), for
modelling multiple-state processes directly, using exchangeability ideas. A Bernoulli trip is a
reinforced random walk (Coppersmith and Diaconis, 1987; Pemantle, 1988) on a `tree' which
characterizes the space for which a prior is required. An observation in this space corres-
ponds to a unique path or branch of the tree. The path corresponding to this observation is
reinforced, i.e. the probability of a future observation following this path is increased. Thus,
after n observations, a maximum of n paths have been reinforced.

To construct a Bernoulli trip we discretize the relevant space. The walk starts at �0 and
moves in one of a possible ®nite number of directions to reach �1, say. From here the walk
moves, again in one of a possible (®nite) number of directions. In general, a walk reaches �
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and moves to one of a (®nite) number of `positions', the collection of which we shall denote
byM� . For the ®rst walk

P ��! �0 2 M�� � ���, �0 �
� X

�@2M�

���, �@ �,

where each � is non-negative. There will be positions which, if reached, result in termination
of the walk, and this eventually happens to all walks, whatever the path. After the ®rst walk
the parameters � are updated. If during the course of the ®rst walk a move was made from
� to �0 then we simply replace ���, �0 � by ���, �0 � � 1. The second walk follows these new
probabilities. After the second walk the new parameters are themselves updated in the same
way and the third walk follows these twice-updated probabilities, and so on. It is clear that
the probability that the second walk coincides with the ®rst walk exactly has increased
(reinforcement).

If we denote the path of the ®rst walk by Y1 and the path of the second walk by Y2 and so
on, then we can write down without much di�culty the joint probability for the ®rst n walks
following particular paths. From this it is straightforward to show that �Y1, . . ., Yn� are
exchangeable random variables for all n. Explicitly, we have

P �Y1, . . ., Yn� �
Q
�

Q
�02M�

���, �0 �� n��, �0 � �� P
�02M�

���, �0 �
����02M� n��, �0 � �
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where n��, �0 � is the number of walks which move from � to �0, a�x� � a�a� 1� . . . �a� xÿ 1�
and a �0� � 1.

A Bayesian bootstrap procedure would be to obtain the posterior parameters and then to
set the prior parameters to 0. Thus, �*��, �0 � � n��, �0 �. In such cases the predictives only
depend on the data.

To illustrate, consider a two-state process with one absorbing state, i.e. a survival model.
Each walk starts at �0, 0� and on reaching say �k, 0�, k � 1, 2, . . ., the walk can move to either
�k� 1, 0� or �k� 1, 1�. We assume that k indexes time points t1, t2, . . .. If a walk reaches �k, 1�,
for any k, then the walk is terminated (obviously this corresponds to death at tk). The move
�kÿ 1, 0� to �k, 0� indicates survival from tkÿ1 to tk. Explicitly, for k � 1, 2, . . .,

Pf�kÿ 1, 0� ! �k, 0�g � �k0

�k0 � �k1

and

Pf�kÿ 1, 0� ! �k, 1�g � �k1

�k0 � �k1

:

Clearly each walk is characterized by the point k at which the move to �k, 1� is made; let Yi

represent this point for the ith walk. A priori we have

P �Y1 � k� � �k1

�k0 � �k1

Q
j<k

�j0

�j0 � �j1

,

and a posteriori after n observations we have

P �Yn�1 � kjY1, . . ., Yn� �
�*k1

�*k0 � �*k1
Q
j<k

�*j0
�*j0 � �*j1

,

�*k0 � �k0 � nk0 and �*k1 � �k1 � nk1, where nk0 is the number of walks that move from �kÿ 1,
0� to �k, 0� and nk1 is the number of walks that move from �kÿ 1, 0� to �k, 1�.

We can easily deal with right-censored observations within the Bernoulli trip framework. A
censored observation at k, i.e. Y > k, corresponds to a walk being censored at k. The up-
dating mechanism for such a walk is given by �j0 ! �j0 � 1 for all j4 k. Note that the walks
remain exchangeable provided that the censoring mechanism is independent of the failure
mechanism.

The Bernoulli trip just described can be shown to be a discrete time version of the beta-
Stacy process detailed in Section 3. Whereas it would be di�cult to extend the stochastic
process approach to model multiple-state processes it is relatively easy within the Bernoulli
trip framework. The only drawback, if indeed it is, is that the space needs to be discretized.
Typically, however, data arising from multiple-state processes do come in a discrete formÐ
as information obtained each day, week or during some other unit of time.

5.2. Example
We reanalyse a data set presented by De Gruttola and Lagakos (1989) and reanalysed by
Frydman (1992), Table 1. 262 haemophiliacs, divided into two groups, heavily and lightly
treated, were followed up over a period of time after receiving blood infected with the human
immunode®ciency virus (HIV). Observations take the form of health states occupied at the
end of each 6-month interval. State 1 is infection free, state 2 corresponds to HIV infection
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and state 3 is the onset of acquired immune de®ciency syndrome (AIDS). According to
current mainstream medical theory, it is not possible to have AIDS without ®rst being HIV
positive and so it is not possible to move directly from state 1 to state 3. For the illustrative
results that follow, we take a Bayesian bootstrap approach, i.e. we set the prior parameters
to 0. De Gruttola and Lagakos (1989) and Frydman (1992) both analysed the data non-
parametrically via self-consistent estimators (Turnbull, 1976) but the former assumed the
times in states 1 and 2 to be independent.

We de®ne the ®rst walk via the transition probabilities

Pf�kÿ 1, 0� ! �k, 0�g � �k0

�k0 � �k1

,

Pf�kÿ 1, 0� ! �k, 1�g � �k1

�k0 � �k1

for a transition from state 1. For a transition from state 2 to state 3, we de®ne

Pf�kÿ 1, 1� ! �k, 1�g � �k1
�k1 � �k2

and

Pf�kÿ 1, 1� ! �k, 2�g � �k2
�k1 � �k2

:

The walk is completed at k whenever �k, 2� is reached. We can obtain the prior predictive for
a particular event; for example, for j < k,

P�T � k, S � j � � �j1

�j0 � �j1

Q
l< j

�l0

�l0 � �l1

�k2
�k1 � �k2

Q
j<l<k

�l1
�l1 � �l2

,

where T denotes the time to reach state 3 and S is the time to reach state 2 (if at all). If state 2
is not visited then

P �T � k, state 2 not visited� � �k2

�k0 � �k1 � �k2

Q
l<k

�l0

�l0 � �l1 � �l2

:

Note that we need to de®ne the parameters � and � so that the ®rst walk will end with
probability 1. Note, also, that the model described assumes that the transition probabilities
from state 2 to state 3 do not depend on the time of transition from state 1 to state 2. This is
the Markov model and will be referred to as model M�c�. The semi-Markov model, in which
the transition probabilities from state 2 to state 3 do depend on the time of transition from
state 1 to state 2, can be represented within the Bernoulli trip framework without di�culty.
We could have model M�a� given by

P �T � kjS � j < k� � �kj 2
�kj1 � �kj 2

Q
j<l<k

�lj1
�lj1 � �lj2

to model a direct dependence on the time of transition from state 1 to state 2 or model M�b�
given by

P�T � kjS � j < k� � �kÿj 2
�kÿj 1 � �kÿj 2

Q
j<l<k

�lÿj 1
�lÿj 1 � �lÿj 2

,
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where the conditional probabilities depend only on the time spent in state 2.
If there is uncertainty about which assumption, or model, to choose then a possibility is to

obtain an estimator which comprises a mixture of estimators under the di�erent assumptions.
Explicitly this involves taking the estimator P̂ given by

P̂ � P̂�a� ��M�a�jdata� � P̂�b� ��M�b�jdata� � P̂�c� ��M�c�jdata�,
where P̂�.� is the estimator under M�.� and ��M�.�jdata� is the posterior weight assigned to
M�.�, i.e.

��M�.�jdata� / ��datajM�.� � ��M�.� �,
where ��M�.� � is the prior weight assigned to model M�.�. Therefore to obtain the estimator
P̂ it only remains to evaluate ��datajM�.� �. These are in fact straightforward to calculate
based on P�Y1, . . ., Yn� given in Section 5.1. It remains to decide on the values of the
�s and �s with which to determine ��datajM�.� �. First, for large �s and �s the prior
speci®cations should swamp the data and the model. This is the case and, for � � � � 106,
logf��datajM�.� �g � ÿ578:8 for all M�.� (we have removed the term

Q
k

�
�nk0 �
k0 �

�nk1 �
k1

��k0 � �k1� �nk0�nk1 �

from ��datajM�.� � which is common to all M�.� ). To represent vague a priori information, we
consider �.2 � ��.1 � 10ÿ6; for � � 1, 10, 100,

logf��datajM�a��g � ÿ390:3, ÿ 337:3, ÿ 284:4,

logf��datajM�b��g � ÿ260:0, ÿ 234:6, ÿ 209:3

and

logf��datajM�c��g � ÿ249:2, ÿ 226:1, ÿ 203:1:

On the bases of these factors the data support M�c�, the Markov model.
For illustration, Fig. 5 is the estimated cumulative distributions of times to HIV infections

for the two groups, under the Markov assumption. These estimates are in good agreement
with those of Frydman (1992), Fig. 2. Appendix A.2 considers the situation where some
transition times are interval censored, relevant for the data in this example. Whereas it would
appear di�cult to extend the mathematical framework of Frydman to more complex models,
the framework presented here is readily extended (Walker, 1998).

6. Discussion

This paper has surveyed a range of current research in the area of Bayesian nonparametrics.
The work is ongoing and several problems remain unresolved. In particular, more work is
required in the following areas: a full Bayesian nonparametric analysis involving covariate
information; multivariate priors based on stochastic processes; multivariate error models
involving PoÂ lya trees; developing exchangeable processes to cover a larger class of problems;
nonparametric sensitivity analysis (Lenk, 1996).

A further question that arises is the extent to which we currently understand the potential
mathematical consequences of the toolkit that we are developing. Diaconis and Freedman
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(1986) presented a nonparametric model that uses a symmetrized Dirichlet prior for the
underlying distribution and an independent prior for its median. They then demonstrated
that seemingly innocuous choices for the latter led to an inconsistent Bayes estimate of the
median. For the same model, they showed other reasonable priors for the median that are
consistent. In the light of results such as those in Hjort (1990) and Diaconis and Freedman
(1993) that give demonstrably consistent nonparametric Bayesian procedures, general theo-
retical advances that pin-point the pitfalls would indeed prove valuable. Recent progress has
been made on these problems; see Barron et al. (1996), Ghosal et al. (1997) and Shen and
Wasserman (1998).

We believe that Bayesian nonparametrics have much to o�er. As far as nonparametric
versus parametric analyses are concerned, in relatively `well-behaved' cases, where a para-
metric analysis would have coped, we typically obtain similar forms of posterior inference,
particularly posterior means, but with appropriately greater ranges of uncertainty (as indicated
in Section 3.4). When the appropriate form of posterior should be `badly behaved' (see, for
example, Fig. 4) the nonparametric analysis will re¯ect this, whereas most parametric analyses
would not reveal this fact. As far as Bayes versus non-Bayes approaches are concerned, we
note

(a) the very real advantage of being able to input broad prior ideas of characteristics such
as location, scale and shape,

(b) the much richer and more tractable forms of inference that are available as a con-
sequence of the simulation-based approach to computation, where the technology of
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implementation for nonparametrics is now essentially no more di�cult than for the
parametric case.

Acknowledgements

Research reported here was supported in part by an Engineering and Physical Sciences
Research Council `Realising our potential' award and travel grant, a National Science
Foundation grant and ®nancial support from the Business School at the University of
Michigan, Ann Arbor. We are grateful to several reviewers for helpful comments on earlier
versions of the paper.

Appendix A

In Appendix A.1 we outline the simulation algorithm for the example in Section 4.4 and in Appendix
A.2 we detail the solution to the interval-censored observations for the example in Section 5.2.

A.1. Simulation algorithm
Here we provide an outline algorithm for the multiple-regression example in Section 4.4. The algorithm
is based on a Gibbs sampler for which we need to sample from the full conditionals p��jF, data� and
p �F j�, data�. In the following we let mj denote the jth partition � j � 1, . . ., 2m� in the mth level of the
tree. Here � � ��1, . . ., �p � and the prior for � is a multivariate normal distribution with zero mean and
covariance matrix of the form diag��21, . . ., �2p �.
Step 1: set the starting value for �.
Step 2: update the f�mj g based on the n IID observation Zi � Yi ÿ Xi�; so,

�mj ! �mj �
Pn
i�1

I�Zi 2 Bmj �:

Step 3: if B� � BMj , for j 2 �1, . . ., 2M �, and � � �1 . . . �M, then

F�BMj � �
� QM

l�1; �l�0
C�1 : : : �lÿ10

� QM
l�1; �l�1

�1ÿ C�1 : : : �lÿ10�

and the C�0 are independent beta���0, ��1� variables.
Step 4: the likelihood function for �, given FM, is

l��� � Q2M
j�1

FM �BMj �nj ,

where nj � �i I �Zi 2 BMj �. Generate �* from the multivariate normal distribution with mean � and
covariance matrix diag�� 21 , . . ., �2p �. Using a random walk Metropolis±Hastings algorithm, take u
from the uniform distribution on the interval �0, 1�. If

u <
l��*�
l ��� exp

�
ÿ 0:5

�Pp
l�1

�*l
2 ÿ �2

l

�2l

��
,

then the chain moves to �*; otherwise it remains at �.

Repeat steps 2±4 to construct the Markov chain, resetting the f�mjg to their initial values after
completing step 4.

A.2. Solution for example in Section 5.2
A complication with obtaining the posterior trips arises if some of the observations are interval censored.
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Suppose that one observation (i � n) is interval censored, i.e. Sn is known to be in the interval
�k1, . . ., kL � (kL <1 and Tn > kL ). The (random) updated parameters are given, for M�c�, by

�*k0 � �k0 � nk0 � J �k

and

�*k1 � �k1 � nk1 � I �k < kn� � J �k,

where nk0 � �nÿ1
i�1 I �Si � k� and nk1 � �nÿ1

i�1 I �Si > k�. Here J �k and J �k are random and de®ned on
f0, 1g where

I �J �k � 1� � I�Sn � kjk1 4 Sn 4 kL, S1, . . ., Snÿ1, T1, . . ., Tnÿ1�,
I�J �k � 1� � I �Sn > kjk1 4 Sn 4 kL, S1, . . ., Snÿ1, T1, . . ., Tnÿ1�

and

P�J �k � 1� � P�Sn � kjS1, . . ., Snÿ1, T1, . . ., Tnÿ1�
P�k1 4 Sn 4 kLjS1, . . ., Snÿ1, T1, . . ., Tnÿ1�

which is given, up to a constant of proportionality, by�
�k
Qkÿ1
l�k1
�1ÿ �l �

� QkL
l�k�1
�1ÿ �l �,

where

�k �
�k0 � nk0

�k0 � nk0 � �k1 � nk1

and

�k �
�k2 �

Pnÿ1
i�1

I �Ti � k, Si < k�

�k1 � �k2 �
Pnÿ1
i�1

I �Ti 5 k, Si < k�

for k 2 fk1, . . ., kL g. For more than one interval-censored observation we can proceed by sampling the
missing data, conditionally on all the other observations, obtain the predictive estimate, or whatever is
required, and then take the average over a number of simulations. Without loss of generality, let
S1, . . ., Sm (m4 n) be interval censored, with Sj 2 �k1� j �, . . ., kL� j � � (Tj > kL� j � ). The approach is to
sample iteratively, for j � 1, . . ., m, from

P�Sjjk1� j �4 Sj 4 kL� j �, S� j �, T� j � �,
where �S� j �, T� j � � contains all the information in the data and from the sampled variates except on
individual j. If S� j � \ fk1� j �, . . ., kL� j� g �1 then Sj is taken uniformly from fk1� j �, . . ., kL� j � g. At
iteration t we have then sampled fS �t�j : j � 1, . . ., mg, which, combined with the observed data, gives the
estimator P̂ �t�. The required estimator is then given by the average �ÿ1 ��

t�1 P̂
�t�, where � is the number

of iterations. Such a procedure can be viewed as a stochastic version of the iterative algorithm for
obtaining the self-consistent estimator in Frydman (1992). Essentially the sampling from �Sjj . . . �
replaces taking the expectation of �Sjj . . . �. It is also possible to consider the situation in which T and S
are both interval censored by using a modi®ed version of the algorithm just described.
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Discussion on the paper by Walker, Damien, Laud and Smith

David Draper (University of Bath)
This admirable paper concerns two topics of considerable importance to Bayesians and non-Bayesians
alike: model selection and model robustness. In my discussion I shall begin by trying to place the subject
of Bayesian nonparametrics in a slightly broader historical context than that presented by the authors; I
shall then look at some of the `small print' of PoÂ lya trees (PTs), including some warnings for applied
statisticians; and I shall conclude by making a connection between PTs and wavelet density estimation.

Model selection and robustness
Given a model, Bayes's theorem tells you how to update your uncertainty in the light of new data; but
where does the model come from to begin with? Bruno de Finetti had the best answer to that question
that anyone has invented so far: your model comes from considerations of similarity, or exchangeability
(e.g. de Finetti (1930), Lindley and Novick (1981) and Draper et al. (1993)). An informal statement of
what might be termed de Finetti's (1980) `Fundamental theorem of Bayesian modelling' might go like
this: if you are willing to treat (your uncertainty about) the real-valued observables (y1, . . ., yn) as
exchangeable, then you may as well model them hierarchically as

F � p�F �,
�yijF � �IID F

�1�

where F is the long run (large n) empirical cumulative density function (CDF) of the yi. In the special
case of binary outcomes, which de Finetti treated in 1930, the only possible Fs are Bernoulli distri-
butions, di�ering only in their values of � � P�yi � 1�, and model (1) becomes

� � p���,
�yij�� �IID Bernoulli ���:

This binary version of the theorem has been feasible to implement (at least approximately) for the past
250 years, since the days of the Rev. Bayes himself:

(a) you can reliably elicit a prior distribution for a quantity living on �0, 1� (e.g. one of the conjugate
beta distributions orÐ if necessaryÐa mixture thereof), and

(b) you can compute things like p��jy� and p�yn�1jy� with little trouble.

But the general real-valued version of the theorem is much more di�cult to implement (and even de
Finetti himself did not fully know how): you must reliably elicit a prior distribution on the function F,
and how do you compute things like p�F jy� and p�yn�1jy�? The answer to both parts of this question is
Bayesian nonparametrics (e.g. PTs), with Markov chain Monte Carlo (MCMC) sampling as the com-
puting engine. Thus, with the advent of MCMC methods and techniques like those described by the
authors here, what amounts to a crucial 60-year-old foundational problem has ®nally been solved.
Another reason, also involving model selection, that the topic of this paper is so important is

Bayesian model updating. Lindley (1972) reminded us of Cromwell's rule: anything to which you assign
prior probability 0 must have zero posterior probability, no matter how the data come out. This is
potentially embarrassing for Bayesian modelling, as follows. Suppose that you take as your prior on F
(based on past experience with similar problems)

p�F� � point mass on N��, �2� �with a prior on � and ��, �2�
so that, for example, your prior probability that F is multimodal is 0. Now the data arrive and are
strongly bimodal. What do you do? If you retain your original prior, then p�bimodaljdata� � 0, which
may be silly; but if you go back and change your prior (naõÈ vely) you are cheating (using the data twice),
and you risk poor calibration. The problem is serious: people like Lindsey (1999) have seized on it as an
apparent major nail in the Bayesian co�n.
Fortunately there appear to be at least two solutions.

(a) The ®rst is based on Bayesian versions of cross-validation, along the following lines. Placing a
prior on F (or on the structure of, for example, E�yjx� for some predictor x) is a model selection
problem, andÐas many people have noted (see Key et al. (1999) and Draper (1999a))Ðmodel
selection should be approached decision theoretically: to choose a model well you must specify
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the use to which it will be put, for how else will you know whether it is su�ciently good? (For
instance, for some purposes getting the bimodality wrong in the example above is unimportant.)
If the goal is the prediction of future observables, then dividing the data into three (not two) parts
exchangeably (Draper, 1999b) is su�cient to permit both

(i) using the data to help to specify the prior on the model and
(ii) calculating honest (well-calibrated) uncertainty assessments, in spite of (i).

(b) The second solution to the problem posed by Cromwell's rule is Bayesian nonparametrics: if your
prior on F places positive probability on all possible CDFs, then so does your posterior, and
nothing in the data can unpleasantly surprise you. Methods like PTs require you to specify a prior
guess for F (and something like a prior e�ective sample size; see below), but with su�cient data
the posterior will shrug o� any speci®cation errors in the prior and adapt fully to the data.

The small print on PoÂlya trees
With colleagues at Bath and AEA Technologies plc (Draper et al., 1998) I have recently been using
Bayesian nonparametrics to solve a consulting problem in the nuclear power industry. In assessing the
risk of underground storage of nuclear waste, complex computer simulation models yield independent
and identically distributed predictions of radiologic dose for humans on the surface, as a function of
time T since the storage facility failed. A sample of size 10000 for T � 100 years under one scenario
had 9864 zeros and n � 136 positive values, 134 of which ranged smoothly from 1:059� 10ÿ14 to
8:522� 10ÿ1, but the two largest values were 3.866 and 189.3 (!). In spite of the extreme sensitivity of the
results to only one or two observations out of a large sample, public policy considerations require
accurate and well-calibrated uncertainty bands for the underlying population mean, and ideally valid
conclusions should also be obtainable with far smaller sample sizes (since the computer models are
expensive to run).

A normal QQ-plot shows that the n � 136 non-zero dose values yi are close to Gaussian on the log-
scale. One way to write the resulting parametric Bayesian log-normal model is log�yi� � �� �ei, ��,
�2� � p��, �2� and ei �IID N�0, 1), for some prior distribution p��, �2�. The PT idea is to replace the last
part of this model, which expresses certainty about the distribution of the ei, with a distribution on the
set of possible distributions F for the ei. The new model is

log�yi� � �� �ei,
��, �2� � p��, �2� �e:g: conjugate�,

�eijF � �IID F with mean 0 and standard deviation 1,

F � PT ��, Ac�,

9>>>>=>>>>; �3�

where � � fB� g centres the prior on F on the standard normal distribution, by choosing the binary tree
partition sets fB� g based on the quantiles of N�0, 1). Like the authors we use M � 8 levels in the binary
tree and take f�� � cm2 whenever � de®nes a set at level mg to specify Ac, the collection of �s in the PT's
prior beta distributions for the probabilities of moving left or right in the binary partitions. As the
authors note, c > 0 is a kind of tuning constant which is related to the prior sample size hyperparameter
in Dirichlet process priors: with small c the posterior distribution for the ei will be based almost com-
pletely on F̂n, the empirical CDF for the ei, whereas with large c the posterior will be based almost
completely on the prior centring distribution, N�0, 1).

In Fig. 6 I present 50 simulated samples from the PT prior speci®ed above with c � 0:1. It is evident
that the individual samples from this prior dance around like water on a hot griddle, bearing almost no
relationship to the prior centring distribution, and even aggregating across the 50 realizations produces
a density trace that deviates markedly from N�0, 1). This, then, is practical warning 1: attempts to be
`non-informative' with the PT prior on F should be viewed with caution. Warning 2 is that you will need
to revise your intuitions about familiar objects recast in the nonparametric setting: Fig. 7 plots the joint
conditional log-likelihood for ��, �2� in model (3) given a particular estimate of F. In the parametric
Bayesian log-normal model of which the PT model is an expansion, the joint log-likelihood is smooth
and locally quadratic about a single maximum, but in the nonparametric version the analogous plot
looks like a crumpled piece of paper (and is almost fractal in character: enlarging any portion of the plot
produces another almost identical graph), because of the granularity imposed by the choice of M � 8
layers in the PT.
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Fig. 6. (a) 50 samples from a PT(�, Ac ) prior for F centred at N (0, 1) (Ð) with c � 0:1 and (b) histogram
and density trace of the aggregate of the 50 samples (Ð, N (0, 1))

Fig. 7. Typical joint conditional log-likelihood for � and �2 given F in model (3)



Warnings 3 and 4 stem from the following observation: with PTs you are essentially estimating F via
random histograms with many bins (e.g. M � 8 yields 28 � 256 histogram bars), which is like treating F
as a 256-dimensional nuisance parameter, and, even though these extra parameters will exhibit a high
degree of local correlation along the real number line, dozens (or more) of additional parameters are
being estimated with M � 8. Moreover, location and scale cannot be fully unconfounded with shape in
model (3), so some of the slow MCMC convergence in estimating F bleeds into ��, �2�, and the e�ective
sample size for estimating location and scale is (much) smaller. Thus, warning 3: be prepared for long
MCMC monitoring runs to obtain posterior summaries with decent accuracy (in spite of the examples
given by the authors, in which 10000 iterations were used)Ð I found with the radiologic dose data that
50000±100000 iterations were needed to achieve, for example, 2.5 signi®cant ®gures in reporting the
posterior means of � and �2 with high Monte Carlo probability. And, ®nally, warning 4: in specifying
your priors on location and scale parameters you will probably have to recalibrate your intuition about
how much information is present in the data for such parameters, i.e. people who like to be relatively
uninformative in specifying such priors in parametric models should be willing to insert more prior
information (from substantive sources) when the model is expanded nonparametrically to obtain the
same level of accuracy for location and scale.

Wavelets
I shall conclude with a brief remark on Bayesian nonparametric density estimation: it is evident from
the nature of the PT prior, with its binary splits of increasingly ®ne detail and its random histogram
character, that there is an intimate connection between PTs and Bayesian wavelet density estimation
with the Haar (step function) basis (e.g. Abramovich et al. (1998)), which deserves further study.

I have great pleasure in proposing the vote of thanks.

Sylvia Richardson (Institut National de la SanteÂ et de la Recherche MeÂdicale, Villejuif )
It is a pleasure to second the vote of thanks for this timely paper on nonparametric Bayes (NPB) pro-
cedures, a topic of great interest. The authors have succeeded in presenting an expert and enlightening
discussion on the ¯exibility and the computational aspects of three central approaches to the con-
struction of priors for random functions and consequent posterior analysis.

NPB procedures involve high dimensional or in®nite dimensional spaces. As such, they require a large
amount of prior information, which is paradoxical since they are precisely intended to cope with situ-
ations where we have no precise information. Adopting the point of view of a currently non-practitioner
of NPB procedures, the following questions immediately come to mind.

(a) How easy is it to understand the procedures for setting the prior structure?
(b) How easy is the computation from prior to posterior?
(c) What new insights have been gained by using nonparametric versus more standard analyses?

The merits of the beta-Stacy process for modelling random cumulative distribution functions F�t�,
while being able to specify E �F �t�� and E �F2�t��, are convincingly explained by the authors. Thus, it will
be reasonably straightforward to match these speci®cations with prior knowledge on the survival
process. The data do not appear in the prior speci®cations, the set of points of discontinuity being ®xed
at the posterior inference stage. However, the authors, themselves, point to some of the di�culties in
sampling from the posterior, though some algorithms are described for simple models. In practice, it is
likely that these algorithms will not be commonly used and I shall concentrate my remarks on the other
two constructions presented for which prior-to-posterior computations are fairly straightforward.

Note that both PoÂ lya trees (PTs) and Bernoulli trips (BTs) involve in ®ne some arbitrary dis-
cretization; PTs will be partially speci®ed to a level M, whereas BTs rely on discrete time.

PT priors require a binary tree partitioning of the space. In contrast with the Dirichlet prior (DP), it
has long been recognized (Ferguson, 1974) that the points of subdivision play a part in the posterior
properties of the process, which is an undesirable feature. However, in comparison with the DP, PTs are
more ¯exible since they allow a choice of ��0 and ��1 at each level, whereas for the DP �� � ��0 � ��1 is
necessary (Ferguson, 1974). In particular, the parameters � of the PT can be chosen to ensure that the
random probability measure F is absolutely continuous with probability 1.

To use this greater ¯exibility in practice, we are thus faced with the choice of the partition and that of the
�s. Following Lavine (1992), the authors describe a canonical way of centring the PT prior on a particular
probability measure F0 by using partitions de®ned via the percentiles of F0, and taking ��0 � ��1 for each
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�. This seems quite natural in regression problems, such as the example in Section 4.4. Nevertheless,
values of �� must still be chosen for each level. The common choice �� � cm2 gives di�erent results for
di�erent values of c, since this parameter controls the smoothness of the predictive density, and large
values of c leading to closeness to F0. I ®nd this disturbing and cannot see how using a prior on c, as
indicated in the paper, would meaningfully reduce this arbitrariness. It would be interesting to hear the
authors' experience with the use of such a prior. The alternative suggestion made in the paper of
de®ning the �s to match EPT�F �B�� � and EPT�F 2�B�� � with those of a parametric model is not illustrated,
though recommended. One wonders whether these choices which determine ��0 and ��1 also ensure
absolute continuity of F.
PTs have also been used in survival analyses with censored observations to de®ne prior distributions

for the time to death (Muliere and Walker, 1997). The context is that of obtaining a predictive distri-
bution for future observations. There, instead of the canonical construction, the partition is partly
determined by the censoring times observed in the data, to preserve conjugacy. Is there a justi®cation for
this choice of data-dependent prior structure, apart from the convenience of computation?
BTs present an interesting prior model for the time to absorption in the framework of multistate

processes with an absorbing state. The dimension of the problem is reduced by time discretization and
then prior parameters � ��, �0 � are set for all types of transition at each time. Simple updating rules
govern the updating of parameters for prediction of time to absorption of a new observation, which is
an attractive feature. The Kaplan±Meier nonparametric estimator of a survival time distribution can be
obtained as a special case when all the prior parameters are set to 0.
For a simple Markov process, there are as many prior parameters as allowed transitions between

the states at each time point, but, if we are rightly interested in relaxing the Markov assumption to
condition on timing of previous transitions, this multiplies enormously the number of prior parameters.
Moreover, how much the prior swamps the data will depend on the number of prior walks which have
previously executed the same transitions. The authors interestingly use three di�erent speci®cations of
the transitions in their example in Section 5.2. For the semi-Markov model (a), there will clearly be
fewer observed transitions of each type, and thus the prior in¯uence will be di�erent in comparison with
the other models. Hence can we really use this approach for model comparison as done by the authors
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Fig. 8. (a) Latent covariate Ð all subjects (n � 300), (b) surrogate Ð all subjects (n � 300), (c) DMA estimate of
the true covariate density using only 30 latent values and (d) DP estimate of the true covariate density using only
30 latent values



and how can we calibrate it? It is a little worrying to see how the in¯uence of � on the posterior
probabilities shown in Section 5.2 is clearly larger for model (a) which contains more prior parameters
than for model (c) (assuming that the ratio � was used in a similar fashion).

I now turn to comment on the paper's relative lack of display of posterior variability. Apart from
Fig. 1, all the other graphs show predictive curves without any variability, and thus stay at a descriptive
level. Nevertheless, one of the claims is that NPB procedures provide `appropriately greater ranges of
uncertainty'. It would have been interesting to have algorithmic details of the necessary steps for PT and
BT models as well as seeing in the examples how a display of this variability could in¯uence the scienti®c
conclusions and provide new insights, particularly since two of the examples involve comparisons of
treatments.

Finally, as mentioned in Section 1, another approach to making few distributional assumptions on
the underlying population distribution is to turn to models involving ®nite mixtures of distributions. In
many hierarchical models, mixture of Dirichlet process (MDP) models have commonly been used.
Recently, Green and Richardson (1998) explored the connection between MDP construction and `a vari-
able number of components' version of the usual mixture model with Dirichlet weights and multinomial
allocations, abbreviated as DMA models. They showed that the unbalancedness of the partition distri-
bution, which exists in the DP model, persists a posteriori, leading to a di�culty of interpretation of the
mixture components in the DP case. Overall similar predictive densities between DMA and DP models
were found for a range of density shapes, as well as in the context of modelling a latent distribution in a
measurement error context (Fig. 8 and Table 1), though in some cases the MDP model leads to higher
variability of the latent variables for some extreme observations (Fig. 9). This supports exploring the use

Discussion on the Paper by Walker, Damien, Laud and Smith 515

Table 1. Performance of DMA and DP models as priors in a measurement error model{, from a
simulation study with 50 replicates

True parameter values Parameter Results from the following analyses:

DMA DP

� � 0:5 �� 0.51 (0.05) 0.51 (0.05)
�1 � 0:4 ��1 0.40 (0.40) 0.41 (0.39)

mse��1� 0.07 0.07

{Regression model between outcome y and unknown latent variable x, logitfP�y � 1jx�g � �0 � �1x;
measurement model between surrogate u and x, u � N�x, �ÿ1�; prior model ��x� for the distribution of
x, DP or DMA model with mixtures of Gaussian distributions. Data were simulated following these
distributions with ��x� as a mixture of three Gaussian distributions: 0:6N�0:19, 0:082� � 0:2N�1:05,
0:22� � 0:2N�1:63, 0:482�. The values y and u were recorded on a sample of size 300, among which only
30 values of x were also supposed known.

Fig. 9. (a) Posterior means for the latent variable and (b) posterior variances for the latent variable



and the relative performance of mixtures with variable numbers of components as an alternative to
some NPB constructions in a variety of contexts.
In conclusion, it gives me great pleasure to second the vote of thanks. To paraphrase Milton:

`Perhaps some good will come of the tasting of the fruit of these forbidding PoÂ lya trees'.

The vote of thanks was passed by acclamation.

J. A. Nelder (Imperial College of Science, Technology and Medicine, London)
I want to make a couple of relatively minor comments about two of the ®gures. First, in Fig. 1, the
di�erence in the posterior density suggests to me that at least one of the priors is making a substantial
contribution to the posterior. If this is so, it is important to check that the contributions from the prior
and the likelihood are consistent with each other; if they are not, the model is defective. I should be
interested to know whether they were consistent.
Second, Fig. 4, the frailty example: the Aitkin±Clayton trick of analysing the centring variable as a

Poisson generalized linear model (GLM) can be extended via the hierarchical GLM models to include
random e�ects. For a GLM with binary data, there are problems in interpreting the residuals, which fall
into two classes and often give rise to bimodal histograms. I suspect that the same will be true for the
sets of random e�ects that are found in the frailty model. The same bimodal e�ect can also be produced
if an important covariate is omitted from the model. I conjecture that Fig. 4 shows the joint e�ect of
these two causes. Certainly, the sex di�erence is importantÐ its omission increases the deviance by
10Ðbut after allowing for it there are still signs of bimodality, which I conjecture is caused by the e�ect
of having two subclasses corresponding to the censored and uncensored cases.

E. I. George (University of Texas, Austin)
This is a wonderful paper for me in that it opens up a whole new area of modellingÐa new beginning.
It is interesting to think about how some modelling problems might now be addressed perhaps more
systematically. I wonder whether the authors can help me with a current problem on model selection on
which I have been working.
I have 100 models, 90 of which are very similar. People tend to put uniform priors on things. This is

really unacceptable in this case because, if 90 of the models are very similar, it would somehow put too
much mass in that portion. An example of this would occur in one of my favourite model selection
problems, variable selection. Imagine that I have p variables and 2 p models, and that many of the
covariates are extremely highly correlated. I do not want to put a uniform prior on everything. In fact,
some of the models might be so similar that I would want to divide the probability.
One way to start to think about it is perhaps that I have exchangeable subclasses, and how I might

think about using one of the authors' nonparametric set-ups to put priors on those subclasses. I thought
about a Dirichlet prior, but the authors have opened up a whole new realm of other possibilities, and I
wonder whether the PoÂ lya trees or Bernoulli trips might be useful in this regard.

Thomas Leonard (University of Edinburgh)
Are the broad classes of models so thoroughly reviewed by the authors really adequate for modelling
unknown distributions? For example, Leonard (1996) demonstrated that Dirichlet processes cannot be
adequately extended to hierarchical Bayes modelling; most of the models recommended by the authors
contain a variety of conditional independence assumptions and do not lead to ¯exible posterior smoothing.

Suppose that y1, . . ., yn constitute a random sample from a distribution with multivariate density
f �t�, for t 2 B, some bounded region of Euclidean space. Extending Leonard (1973, 1978), Thorburn
(1986) and Hsu and Leonard (1997), let

f�t� � expfg�t�g
� �

B

expfg�u�g du �t 2 B�,

where g denotes the logistic density transform, and the integral can be evaluated by importance
sampling from a mixture of multivariate t-densities. Let the prior process of g be Gaussian with mean
value function ��t�, e.g. taking the form �T�t��, and covariance kernel K�s, t�. I believe that this con-
tinues to provide a very general and ¯exible paradigm within which these problems can be bene®cially
investigated. Posterior estimates for f with similar smoothness to the prior covariance kernel are
available, and an in®nitely di�erentiable Gaussian covariance kernel is very convenient.
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Martin B. Hansen and Ste�en L. Lauritzen (Aalborg University)
There is another area of application of the group of ideas in the present paper. Assume that we have a
random sample Y1, . . ., Yn from a distribution function F, which is related to an underlying distri-
bution G via the integral equation

F �x� �
�
k�x, y� dG�y�,

where k�. , .� is an integral kernel. If the distribution of interest is F this is an instance of an in®nite
mixture problem (as opposed to the ®nite mixture case studied in Section 2.1.1). This is a familiar
problem in statistics and arises in for example convolution and monotone density problems; for a
general reference see for example Lindsay (1995). If G is the distribution of interest this is an instance of
a statistical inverse problem, which has received much interest lately; see for example Koo and Chung
(1998) and many other references therein.

We can attack this type of problem by assuming a nonparametric prior on the distribution G, and
then perform the analysis under this assumption. This seems to lead to complicated posterior calcu-
lations as we are dealing with indirect observations from the prior distribution. Anyway, the problem
can be resolved in some cases by Markov chain Monte Carlo techniques. An analysis along these lines is
indeed carried out in Hansen and Lauritzen (1998). In that paper our main interest was to make non-
parametric Bayes inference for concave distribution functions. The idea was to use a mixture of Dirichlet
processes on the space of probability distributions on (0, 1� as a prior for G, and then to exploit the
unique correspondence between probability distributions on (0,1� and concave distribution functions
on (0, 1� through their representation as mixtures of uniform distributions (see for example Feller
(1971)).

Applications of Bayesian nonparametric inference to general inverse problems are currently being
investigated.

Larry Wasserman (Carnegie Mellon University, Pittsburgh)
Nonparametric inference is an exciting area, rich with possibilities yet fraught with di�culties. Diaconis
and Freedman (1997) and Cox (1993) showed that apparently reasonable priors may yield posteriors
with essentially zero coverage. Only the most doctrinaire Bayesian would fail to be alarmed at near zero
coverage. See also Shen and Wasserman (1988), Wasserman (1998) and Zhao (1998). Sometimes these
problems can be ®xed by using `sieve priors' (Zhao, 1993). Here, in®nite dimensional models are
approximated with a sequence of ®nite dimensional models and the dimension is treated as a parameter.
These results suggest that sieve priors might be preferred to purely in®nite dimensional priors. For
example, for mixture models, using a mixture with k components and treating k as a parameter (Roeder
and Wasserman, 1997; Richardson and Green, 1997) may be better than a Dirichlet process mixture
(DPM) which puts a prior directly on the space of countable mixtures. Note that the DPM treats the
number of components appearing in the sample, not of the underlying density, as unknown.

As Robins and Ritov (1997) showed, sometimes no prior leads to good nonparametric inference. For
example, ifW � �Z, X, Y � where Z is a high dimensional covariate, X is a binary treatment variable and
f �xjz� is known (e.g. X is randomized and the randomization probabilities depend on Z) then the
Horvitz±Thompson estimator for the population average treatment e�ect

� �
�
fE�YjX � 1, Z � z� ÿ E�YjX � 0, Z � z�g dF�z�

is
p
n consistent, with no assumptions on the joint law. This estimator depends on the ancillary process

f �xjz� so the usual Bayesian analysis will not recover anything like this estimate. Instead, the Bayesian is
stuck trying to estimate nonparametrically the joint law, which is hopeless if Z is high dimensional.
Perhaps in these cases we should all be frequentists.

Nonparametric Bayesian inference has great potential. But, until we know how to choose priors so
that the posterior has good rates and coverage properties, we should be cautious.

Hans C. van Houwelingen (Leiden University)
The authors show that Bayesian nonparametric inference has made considerable progress in recent
years. They start with the question `Why nonparametrics?'. One might also ask `Why Bayesian?'.

Bayesian methods have become popular among applied statisticians for two reasons. First, Bayesian
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methodology combined with the Markov chain Monte Carlo algorithm can handle complex (hierarchical)
models that are almost intractable by classical maximum likelihood. Secondly Bayesian methodology,
often disguised as penalized likelihood (Eilers and Marx, 1997), can help to bridge the gap between
parametric and nonparametric models. The essential element is that some parameters of the prior (the
weight of the penalty; the order of the spline) are estimated from the data. Empirical or hierarchical
Bayes models can help the frequentist in adapting the smoothness of his model.
In this paper, Bayesian methodology could be used to control the smoothness of the estimated distri-

bution functions, but this needs further elaboration to show applied statisticians the potential merits of
the mathematics presented here. In Section 2.1 the authors remark that the Dirichlet prior assigns
counter-intuitive negative correlations. The neutral to the right process with its independent increments
does not behave much better. To obtain more ¯exible models, the amount of correlation between the
F�B� of neighbouring Bs should be a parameter in the model that is not chosen a priori but estimated
from the data in a hierarchical model. The ®rst instance in the paper where such an extra layer could
have been added is in the mixture of Dirichlet processes of Section 2.1.1. Adding a scale parameter � to
f �.j�i� and estimating � from the data (by adding a prior on �� gives the data-driven smoothness control
I would like to advocate.
The second instance where an extra smoothing layer could be added is in the PoÂ lya trees of Section 4.

The parameter c controls the smoothness of the distribution function. The authors remark that it could
be given a prior, but they use a preset value. It would be interesting to see what the estimate of c would
be and how much information about c is available from the data. Adding the extra layer in the model
would add to the computational complexity. A simpler way is the kind of Bayesian mixture of models
described in Section 5. Amixture of a parametric and a nonparametric model could have been considered
in the examples of Sections 3 and 4. That would have enabled a comparison of the ®t of the parametric
and the nonparametric models and would, presumably, have made a case for Bayesian nonparametrics
from a data analytic point of view. As the paper stands, it convincingly shows that it could be done, but
not yet that it should.

The following contributions were received in writing after the meeting.

Mark J. Brewer (University of Exeter)
I con®ne attention to the analysis of the Kaplan and Meier (1958) data set from Section 3.4 of the paper.
The authors are concerned with estimation of the probability of failure before 1 month, F�0, 1).

Noting that exactly one observed failure occurs before 1 month, an oversimplistic view suggests the
estimated probability to be 0.125, and of course it is no coincidence that the posterior means given for
F�0, 1) are close to this ®gure. We might also expect the bulk of the mass of the posterior to be around
0.125, but Fig. 1 shows the nonparametric version having a `mode' near zero. Assigning such a large
probability to F�0, 1� < 0:05, for example (around 0.37?), seems odd given the above. Do the authors
have a view on this?
To study this further, consider a simplistic nonparametric approach which does not make use of a

hazard function. Consider a model based on cross-validated likelihood of kernel densities as in Brewer
(1998) but using simulated values for the censored observations, illustrated by the directed graph of Fig.
10(a), and where

f�yjjfxg, fcg, �� � f0�yjjfxg, �� � fc�yjjfxg, fcg, ��,

f0�yjjfxg, �� �
1

4ÿ I� j4 4�
P4
i�1
i6�j

K��yj ÿ xi�,

fc�yjjfxg, fcg, �� �
1

4ÿ I� j5 5�
P8
i�5
i 6�j

I�yj > cj� f0�yjjfxg, ���
I�yj > cj� f0�yjjfxg, �� dyj

,

xi represent the observed failures, cj represent the censoring times, K� is a Gaussian kernel function
(with re¯ection at the origin) and � is the bandwidth with �ÿ2 having a standard non-informative
gamma prior (� � � � 0:001�. Note that yj � xj for j � 1, . . ., 4.
We construct a Markov chain Monte Carlo algorithm which samples values for y5±y8 and �, and uses

the y-values to give a kernel density estimate from which we evaluate F�0, 1) at each iteration. We make
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10000 iterations, and a histogram of the sampled F�0, 1) is shown in Fig. 10(b) along with the para-
metric posterior for comparison. Our posterior mean is 0.122, in accord with those from the paper. As
can be seen, the shape of our posterior is much closer to the parametric posterior than is the authors',
yet it has not been forced by any parametric assumptions. We would be interested to hear the authors'
comments on this.

F. P. A. Coolen (University of Durham)
In relation to the presentation of the beta-Stacy process (Section 3), I would like to mention a simple
construction of Kaplan and Meier's product limit estimate as presented by Efron (1967). For m
observations (including non-informatively right-censored observations), at points x1 < . . . < xm, place
probability mass 1=m at each of these points (no ties are assumed for ease of presentation); if xi1

is the
smallest xi that is censored, remove the mass at xi1

and redistribute it equally among the mÿ i1 points to
the right of it, xi1�1, xi1�2, . . ., xm. If xi2

is the smallest censored value among xi1�1, xi1�2, . . ., xm,
redistribute its mass, which will be f1� 1=�mÿ i1�g=m, among the mÿ i2 points to its right. Continue in
this way until you reach xm. The problem of what to do with the remaining mass at xm if this is a right-
censored value clearly re¯ects the general problems with de®ning the product limit estimate beyond the
largest observation if this is a right-censored value. In my opinion, this `redistribution of probability
mass' process provides a very simple insight into the product limit estimate, in particular when pre-
sented for lifetime data by assuming that all `individuals' receive equal probability mass (summing to 1)
at the start, putting their mass where they `die' or, if they are right censored, passing it on to individuals
who are still alive (again equally shared). This redistribution of probability mass process also occurs in
simple Bayesian models (see Coolen (1997)).

It seems likely that the Bayes estimate based on the beta-Stacy posterior (Section 3.3) can also be
interpreted via such a construction, where part of the mass is distributed as above, and the distribution
of the residual mass corresponds to the included parameters � and �. This might not only enable a better
understanding of this posterior Bayes estimate but also provide more insight into the corresponding
prior speci®cations (Section 3.2). Whether parametric or nonparametric models are used, all distri-
bution of mass di�erently from according to Efron's construction occurs on the basis of assumptions or
information added to the observations, included in a Bayesian analysis either via modelling assumptions
or via speci®cation of priors for assumed models.

David G. T. Denison (Imperial College of Science, Technology and Medicine, London) and Bani K.
Mallick (Texas A&M University, College Station)
The authors have presented a timely paper bringing together many of their own ideas, and those of
others, on Bayesian nonparametric estimation of random distributions. However, as they mentioned,
the exposition does not include any discussion on novel Bayesian nonparametric regression methods.
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Fig. 10. (a) Independence graph for the cross-validation kernel density model and (b) parametric posterior for
F (0, 1) (Ð) and kernel nonparametric posterior (histogram)



The two problems are inextricably linked and we highlight one of the unanswered questions in non-
parametrics and ask the authors for insight.
Consider the usual generalized autoregressive conditional heteroscedastic (GARCH) model (Bollerslev,

1986) which is common when analysing asset returns. The GARCH(1, 1) model can be written as

yt � �t�t, �4�
�2t � �0 � �1y

2
tÿ1 � �1�2tÿ1 �5�

where yt and �
2
t are the return and volatility at time t �t � 1, . . ., T � respectively and �0, �1 and �1 are

coe�cients to be estimated. The error at time t is taken to have zero mean and unit variance. Common
parametric choices for the error distribution are the standard normal or Student t-distributions even
though there is some justi®cation for skewed errors. Once this error distribution is chosen the
GARCH(1, 1) model is fully parameterized.
We have extended the GARCH(1, 1) model by relaxing some of the parametric assumptions. Firstly,

Denison and Mallick (1998a) modelled the volatility �2t as a nonparametric function of y2tÿ1 and �2tÿ1
rather than the parametric form (5). However, the parametric nature of equation (4) was retained and
either a normal or Student t-error distribution was used to model the noise. In later work Denison and
Mallick (1998b) did the reverse. A nonparametric error distribution, namely a PoÂ lya tree, was used to
model �t in equation (4) together with the parametric form for �2t in equation (5). Fixing the variance of
the error distribution in this application to be 1 was not trivial. Fixing the scale of a PoÂ lya tree through
the interquartile range may be straightforward (Section 4.4.1) but ®xing its scale through its variance is
problematic.
It is an open question whether modelling with nonparametric regression functions and parametric

errors or vice versa is preferable and we welcome comments from the authors on this. In our experience
obvious care must be taken to prevent the nonparametric functions over®tting data but it is worth the
extra ¯exibility we gain. Wider credible intervals around the correct distribution or functional form will
always be preferable to tighter intervals around a misspeci®ed parametric model.
Using nonparametric forms to model both the errors and the regression function has not been

attempted as far as we know. This model would appear to be too ¯exible for practical use and, we
believe, the model would have di�culties in separating the truly random from the deterministic elements
of the data set.

Michael D. Escobar (University of Toronto)
First, I would like to comment about the comparison in the discussion between parametric and
nonparametric methods. Most applied statisticians would start with a formal parametric model, but
after looking at the data the statistician might change the parametric model when the data are `badly
behaved'. This means that they had some uncertainty in the real mathematical form of the model.
Changing the parametric model by using a mixture or including a heavier-tailed parametric form leads
to results that are very similar to some of the nonparametric results. So, whereas the strict use of a
parametric model might be near or not near the nonparametric model, the results produced by a
statistician will often look the same regardless of the tool used. This has several implications. These
nonparametric Bayesian methods potentially provide a full Bayesian justi®cation for the statistician's ad
hoc model ®tting. Also, these methods provide a formalization so that the statistician can now quantify
the uncertainty in the mathematical form of the parametric model. This quanti®cation can then be used
to guide the adjustment of the analysis in the badly behaved cases.
Second, I would like to comment on the `several de®ciencies' of the Dirichlet process. I think that the

authors are being a little harsh here. Remember that the Dirichlet process is a simple two-parameter
family. There is the location parameter F0 and a precision parameter c. Yes, once these are speci®ed,
then all the other properties are speci®ed. The advantage of only two parameters is the ease in specifying
priors. If we are using the Dirichlet process to model uncertainty in the mathematical form used in a
parametric model, then F0 is that mathematical form. We would then use a distribution on c to re¯ect
the amount of belief in the parametric model. Also, many of the limitations of the Dirichlet process
seem to disappear when the Dirichlet process is not used alone. For example, when the Dirichlet process
is used in a hierarchical model, then the posterior is no longer a Dirichlet process but a mixture of
Dirichlet processes. Yes, I know that the authors are aware of these points. However, it might appear to
the casual reader of their paper that the Dirichlet process is a mere historical curiosity instead of the
simple and powerful tool that it is.
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Steven N. MacEachern (Ohio State University, Columbus)
This ®ne paper exempli®es several uses of nonparametric Bayesian modelling. The bene®ts of such
models are apparent. By ®tting a larger class of models, error due to model misspeci®cation is reduced
or eliminated. The situation is analogous to a classical problem, where, in a standard regression context,
a line is ®tted to data that arise from a quadratic regression model. The model misspeci®cation is swept
into the error term, resulting in a greater mean-square error than with a quadratic ®t. This can lead to a
larger standard error for the estimated mean response at each level of the covariate. The line also
provides poorer predictions. The situation is muddied in a Bayesian analysis, as the prior distribution
moderates the e�ect of the data, and all our estimates are biased. But, for many models, with larger
sample sizes, we still expect to see both a reduction in bias and a reduction in the spread of the posterior
distribution for model parameters. Qin (1998) demonstrated this e�ect in an item response theory
model, where posterior distributions for a student's ability are noticeably tighter with a nonparametric,
rather than parametric, Bayesian model.

It is now well established that replacing a parametric Bayesian component with a nonparametric
Bayesian component improves the ®t of many models. To increase acceptance of the models, we need to
use the nonparametric components in a directed fashion, developing a collection of modelling strategies
that match our fundamental modelling concepts. One such fundamental concept is the distinction
between ®xed and random e�ects. For ®xed e�ects, we focus on the e�ect; for random e�ects, we focus on
the distribution from which the e�ects come. This distinction, captured by modelling ®xed e�ects with
parametric components and random e�ects with nonparametric components was, to the best of my
knowledge, ®rst successfully described and implemented in Bush and MacEachern (1996). The frailty
model in Section 4.4.2 falls into this framework, with frailties as random e�ects, as does much other work
in the ®eld. The future of nonparametric Bayesian modelling lies in developing, re®ning and popularizing
further fundamental modelling strategies. I am currently developing a class of correlated nonparametric
models that, in addition to allowing covariates to enter the model in natural form, enable us to model
collections of distributions from which random e�ects are drawn as being positively associated, but not
identical, with each other. Applications for these models abound.

Pietro Muliere (UniversitaÁ di Pavia) and Piercesare Secchi (Politecnico di Milano)
We congratulate the authors for their interesting and stimulating review of recent developments in
Bayesian nonparametrics. Our intention is to complement and reinforce the paper with two comments
based on the predictive approach to Bayesian inference.

Exchangeable models
When fYng is an in®nite sequence of random variables, the completely predictive approach to the
construction of the law of the sequence is based on the speci®cation of the distribution F1 of Y1 and of
the predictive distribution Fn�1 of Yn�1, given Y1, . . ., Yn, for all n5 1. Whereas the Ionescu±Tulcea
extension theorem states consistency conditions which guarantee the existence of a unique law for fYng
determined by the sequence fFng, Fortini et al. (1998) (see also Regazzini (1998)) give necessary and su�-
cient conditions on the sequence fFng for the exchangeability of the law of fYn g. This result characterizes
exchangeability in purely predictive terms; the de Finetti measure of the sequence fYng is then obtained
by means of de Finetti's representation theorem. Many priors used in Bayesian nonparametrics can
easily be constructed following this approach, e.g. the Dirichlet process (Regazzini, 1978; Lo, 1991),
PoÂ lya trees (Walker and Muliere, 1997a) and the beta-Stacy process (Walker and Muliere, 1997b).

Partial exchangeability
There are situations where the assumption of exchangeability for the sequence of observables is too
restrictive or does not incorporate all the relevant information about the data; a weaker assumption is
that of partial exchangeability introduced by de Finetti (1938) and considered also by Diaconis and
Freedman (1980). When fYng is an in®nite sequence of random variables with values in a discrete space,
partial exchangeability and recurrence imply that the law of the sequence is that of a mixture of Markov
chains (Diaconis and Freedman, 1980), i.e., conditionally on a random transition matrix �, fYng is a
Markov chain with transition matrix �. The prior distribution for � may often be characterized in
purely predictive terms; for example, Muliere et al. (1998) introduced an urn scheme called a reinforced
urn process which generates mixtures of Markov chains such that the law of � is the product of
Dirichlet processes. These processes generalize the Bernoulli trips discussed in the paper; they are also a
generalization of the idea of Mauldin et al. (1992) for generating PoÂ lya trees. Reinforced urn processes
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have ready applications to survival analysis whenever individual speci®c data are modelled by a Markov
chain and individuals from the population are assumed to be exchangeable.

M. A. Newton (University of Wisconsin, Madison) and F. A. Quintana (Ponti®cia Universidad Catolica
de Chile, Santiago)
We echo the sentiments expressed in Section 2.1.1 on the complexity and computational intensity of
available Monte Carlo methods for ®tting Dirichlet-process-based models. In recent work we have
investigated a simple recursive algorithm to ®t such models quickly, albeit approximately (Newton and
Zhang, 1999; Newton et al., 1998; Tao et al., 1999). This methodology may be helpful in the early stages
of data analysis before Markov chain Monte Carlo implementation.
The authors discuss di�use prior limits taken after the data are available, noting convergence of a

Bayes estimator to the Kaplan±Meier estimate, for example (Section 3.3). Susarla and Van Ryzin (1976)
pointed this out for the Dirichlet process prior. Here, and in other examples, the di�use prior limit
equals the nonparametric maximum likelihood estimator (NPMLE). The Dirichlet process Bayes
estimator from case I interval-censored data (e.g. current status data) fails to converge to the NPMLE
in the di�use prior limit (Steve MacEachern, personal communication (1994), Newton (1994) and
Newton and Zhang (1999)). Does convergence to the NPMLE occur for any of the more ¯exible priors?
It is interesting that a reinforced random walk on a graphÐPemantle (1988) discussed the case where

the graph is an in®nite treeÐcan be partially exchangeable and thus may be used to model dependent
time series data (Diaconis, 1988; Quintana and Newton, 1998). The Bernoulli trips in Section 5.1 retain
the special exchangeability structure. For example, take the graph G � �V, E� with V � f0, 1g, E � f�0,
0), (0, 1), (1, 0), (1, 1�g and let X1, X2, . . . denote a reinforced random walk on G, say starting at X1 � 0.
This sequence turns out to be a mixture of binary Markov chains, just as a binary PoÂ lya sequence is a
mixture of coin tosses. The extension to real-valued sequences seems to be an open problem.
The authors acknowledge di�culty in extending the stochastic process approach beyond relatively

simple models. Given the similarity of numerical results between priors (Section 3.4), and recent work of
Regazzini (1998) that any exchangeable sequence can be well approximated, in terms of the Prokhorov
metric, by certain mixtures of Dirichlet processes, we wonder whether mixtures of Dirichlet processes
might tend to be favoured over the constructions in Section 3. Have the authors found numerical
examples where the beta-Stacy results are signi®cantly di�erent from those obtained by using natural
mixtures of Dirichlet processes?

Sonia Petrone (UniversitaÁ dell'Insubria, Milan)
I congratulate the authors for their very interesting and useful review of Bayesian nonparametric
inference and applications, particularly in survival analysis. I would like to point out a few possible
directions for development.
Exchangeability is the basic framework for Bayesian inference, but more general dependence structures

are often more realistic. Partial exchangeability might be appropriate for non-homogeneous data. Non-
parametric priors for Bayesian inference with partially exchangeable data, which allow dependence
among groups, have been proposed by Cifarelli and Regazzini (1978). An important development
would be to incorporate uncertainty about the partition of data.
Most of the priors proposed for Bayesian nonparametric inference are discrete. Discreteness of the

Dirichlet process originates from the beautiful form of the predictive distribution and is not, in general,
a problem. However, it might have unexpected consequences outside the exchangeability framework,
e.g. when data are partially exchangeable, with uncertainty about the partition (Petrone and Raftery,
1997).
Continuous nonparametric priors are reviewed in Section 2.1.1 (since `mixtures of Dirichlet processes'

is used by Antoniak (1974) with a di�erent meaning, would `mixtures with a Dirichlet process mixing
distribution' be a clearer term?). Another proposal is to construct a continuous nonparametric prior by
considering polynomial approximations of the random probability measure, as suggested by Petrone
(1999a) using Bernstein polynomials for data in �0, 1�. There are connections with the idea of using
mixtures of basis functions with random weights and random numbers of components (Petrone, 1999b).
The `Bernstein polynomial prior' is consistent and can be generalized to data on the positive real line or
to multidimensional data.
Concerning asymptotics, consistency is a motivation for being nonparametric (Diaconis and Freed-

man, 1983). Le Cam (1986), p. 618, said that even more interesting than consistency is to study the
asymptotic behaviour of the posterior. Dealing with an in®nite dimensional parameter, this means to

522 Discussion on the Paper by Walker, Damien, Laud and Smith



prove an in®nite dimensional version of the Bernstein±von Mises theorem (Diaconis and Freedman,
1997). For evaluating the posterior, large sample approximations could replace simulation techniques,
which might be computationally expensive if the sample size is large.

Prior knowledge about the location and spread of data might be incorporated in the prior distri-
bution of EF�X � and VF�X�, whose analytic expression when F is a Dirichlet process is known (Cifarelli
and Regazzini, 1990; Cifarelli and Melilli, 1999).

Finally, I believe that the predictive approach outlined in Section 5 might be a fruitful line of research
also for overcoming the prior-to-posterior computation di�culties.

Gareth Roberts (University of Lancaster)
I would like to add my congratulations to the authors for this timely and important paper.

The concept of the neutral to the right (NTTR) process represents a natural framework for non-
identi®ability. However, it does endow the scale on which the data are measured a special status. In
other words, the concept of an NTTR process is not preserved under monotone increasing transforma-
tions. This may or may not be appropriate. However, in the spirit of nonparametric analysis it is
interesting to see whether this framework can be extended to include invariance under monotone
increasing transformations without losing tractability.

A natural extension of NTTR processes replaces the LeÂ vy process by a time-changed LeÂ vy process
C�t� � Zf
�t�g, where Z is a LeÂ vy process satisfying the conditions of Section 3 and 
 is a monotone
increasing transformation with limt!1f
�t�g � 1. Such processes are as tractable as LeÂ vy processes.

This would provide a more ¯exible class of prior distributions. One simple idea would be to have a
parametric family for 
. This would then allow easy implementation of Markov chain Monte Carlo
algorithms by adding a 
 updating step. The conjugacy property of theorem 3 is replaced by a con-
ditional conjugacy, conditional on 
.

One natural class for 
 would be the power class f
��.�, � 2 �0, 1�g, where 
��t� � t�. More com-
plicated classes could incorporate stochastic or deterministic information about the support of the
distribution.

Jean-Marie Rolin (UniversiteÂ Catholique de Louvain, Louvain-la-Neuve)
It is a pleasure to comment on this interesting paper on Bayesian nonparametric inference, as some of the
aspects are covered in Rolin (1998). My comments will mainly concern the ®rst three sections.

The introduction is convincing in motivating statisticians to use Bayesian nonparametric method-
ology. Concerning the general framework, theorem 1 requires some assumptions ��
, B� is a standard
Borel space and the expectation of F�B� is a probability measure).

Even if the Dirichlet process has de®ciencies, they are not so important. If the variance has a speci®ed
form and the correlation between the probabilities of two disjoint sets is negative, the same is true for
the multinomial distribution. Moreover, negative correlation is not counter-intuitive. When the prob-
ability of a set increases, the probability of another set must tend to decrease since the sum is less than or
equal to 1. The prior elicitation of the variance is not easy except if it is deduced from a parametric
model. The authors themselves comment that the beta-Stacy approach is indistinguishable from the
Dirichlet process prior and conclude that the signi®cant di�erences are not between choices of the prior.

In Section 3, the prior is a beta-Stacy process if and only if the predictable hazard process

Zÿ�t� �
�
�0, t�

Ff �s,1�gÿ1 F�ds� �6�

is a beta process as de®ned by Hjort (1990). These seemingly di�erent Bayesian models are in fact the
same.

Theorem 2 with right-censored observations is due to Ferguson and Phadia (1979) but these obser-
vations do not show up in the given Bayes estimate.

The example in Section 3.4 is not very convincing. First, the simulated distribution is known because
there is no censoring in the interval �0, 1� and therefore

F� �0, 1� � � betaf2ÿ exp�0:1�, 7� exp�0:1�g: �7�
The histogram does not reveal that the density of this distribution vanishes at zero. However, kernel
estimation of the density in Walker and Damien (1998) shows it. The simulation proposed by Florens
and Rolin (1998) clearly shows this property and seems much more accurate and fast but is only feasible
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for Dirichlet priors. Also the essential indistinguishability between histograms resulting from the beta-
Stacy and the Dirichlet prior is strange because the sample is small and the (predictive) expected lifetime
is in®nite in the ®rst model and 10 in the second. Consequently, a comparison between the non-
parametric Dirichlet and the parametric model should at least require expected lifetimes to be the same
in both, i.e. choosing a priori a � ga�2, 10) (equating prior expectations of F� �0, 1� � would give a � ga�1,
9.5)).
Finally, an important problem is to extend the simple constructive de®nition of Dirichlet processes of

Sethuraman (1994) to beta or beta-Stacy processes. This will permit inference on more general char-
acteristics than survival probabilities (e.g. expected residual lifetimes) and will provide a full Bayesian
nonparametric analysis of models with explanatory variables (see Kalb¯eisch (1978) and Florens et al.
(1998)).

The authors replied later, in writing, as follows.

As Draper has reminded us, the formal need for the construction of probability distributions on (distri-
bution, hazard, etc.) function spaces is implicit in de Finetti's representation theorem. Unfortunately,
the theorem is an `existence' theorem andÐunless we impose further structural conditionsÐdoes not
provide guidance on how to construct such a distribution. However, the analysis depends crucially on
this construction, or prior, since the posterior is fully de®ned by the prior and the data.

The task then is to construct the prior. Parametric priors assign probability 1 to a subset of the
function space, either for convenience or because it is genuinely felt by the modeller or analyst that this
allocation of probability is warranted. However, examples given in the paper and the contributions of
Draper and MacEachern make clear that it is often desirable not to force a parametric shape to the
unknown. In the paper we look at a selection of types of nonparametric prior; other forms are suggested
by Richardson, Leonard, Wasserman, Brewer, Muliere and Secchi, and Petrone.
Draper's illustration via a hierarchical PoÂ lya tree model is interesting; as a general rule, we concur with

his cautionary remarks on Markov chain Monte Carlo (MCMC) convergence. Regarding his warnings
on the modelling aspects, for the example presented, it may be possible to avoid some of the di�culties
by employing, perhaps, a di�erent nonparametric prior, such as a mixture of Dirichlet process (MDP)
prior.
As Richardson suggests, popular forms of prior tend to coincide with those which are easy to work

with, in particular in the sense of being able to specify prior parameters straightforwardly and to update
from prior to posterior. One way to think about the former is to have a prior for which it is possible to
specify E � f � and var� f �, where f is the unknown (random) function. We see this as a good general
procedure for making use of information that is typically available to the experimenter.
For the censored data case, there should be a simple adaptation of what Richardson calls a `canonical

assignment'. Using a data-dependent partition does not automatically imply a data-dependent prior,
thus rendering the Bayesian guilty of double use of data. If the distribution of the random (conditional)
probability of any resulting partition is prede®ned via F0, there is no double use of data: the partition
points are merely for convenience and approximation.
One of the most widely used nonparametric priors is the MDP prior. Newton and Quintana highlight

a result of Regazzini, namely that any exchangeable sequence can be well approximated, in the Prokhorov
metric, via the MDP. Fine, but this does not provide a constructive speci®cation of the prior.
Wasserman and Petrone mention the notion of consistency, i.e. as the sample size tends to 1 the

posterior accumulates around the true function. This may be a desirable property. However, this
property must be balanced with the need to incorporate prior information fully, since posteriors are
usually based on far from asymptotic samples. Constructing a prior by studying the asymptotic prop-
erties of the posterior, at the expense of prior information, does not appear to be sensible. Model
identi®ability from ®nite samples is more important than an ability to discriminate between slightly
di�erent models from very large samples.
Draper points out problems with PoÂ lya trees and Richardson problems with the exchangeable priors.

Wasserman concludes that Bayes nonparametrics do not solve everything. We are aware that the
construction of probabilities on large function spaces will not be trouble free; like all other procedures
in statistics, Bayesian nonparametrics must also be taken with a sizable pinch of salt. Nonparametric
conditional distributions, of the kind described by Wasserman in the Robins±Ritov paradox, are
particularly problematic. This said, the di�culties are worth surmounting and rapid progress in the next
few years is expected.
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A common way of thinking about the Bayesian approach is that it attaches a prior to the likelihood.
We prefer to think in terms of a single probability on the space of distribution functions. From this
perspective, Nelder's question of whether the prior and likelihood are consistent in Section 3.4 seems
inappropriate. If the experimenter has assigned probability 1 to a parametric subset then it is this
assignment which might be called into question in the light of data. However, what does a Bayesian do?
Should he or she keep assigning probability 1 to parametric subsets until he or she is happy? Draper
says that this is a serious problem. The answer is to not assign probability 1 to restricted subsets but to a
class that is su�ciently large (hopefully) to contain the `truth': hence Bayes nonparametrics. Also, in
Section 3.4 we are comparing the posteriors from a nonparametric prior and a parametric prior in which
the parametric prior is used to centre the nonparametric prior. It is with this in mind that we compare
the densities in Fig. 1. As Brewer discovers, not all nonparametric priors lead to the same posterior.

From the public relations perspective, van Houwelingen suggests that Bayes nonparametrics might be
sold in other ways to appeal to non-Bayesians.

Hansen and Lauritzen's work is similar in spirit to that of Brunner and Lo (1989), who used the
Dirichlet process and the uniform distribution for modelling a unimodal density.

Coolen describes a result of Efron on the derivation of the Kaplan±Meier estimator. The redistri-
bution of mass seems to lack theoretical back-up and it is possibly more insightful to think of the
estimator as a predictive distribution for the next observation of an exchangeable sequence, the data
forming the start of the sequence.

Brewer refers to his approach as `simplistic'. Perhaps it is. But, like Coolen's, his approach is clearly
ad hoc. Roberts's suggestion is very interesting indeed and warrants further investigation. George's
questions are intriguing, but clearly require some deep thoughts.

Denison and Mallick use nonparametric priors for the GARCH(1, 1) model. A question is whether
the GARCH(1, 1) model should be generalized. Its existence and form are for a speci®c reason and
generalizations remove these reasons. One might as well start again from scratch to introduce a ¯exible
model for economic time series.

Escobar and Rolin believe the Dirichlet process to be a powerful tool; we agree. Escobar says that one
can use a distribution on the scale parameter of the Dirichlet process, to re¯ect the amount of belief in
the parametric centring model. Allocating such a prior must be troublesome since it is di�cult to
quantify belief in a parametric model. Again, we re-emphasize our idea of working with priors for which
E � f � and var� f � can be speci®ed arbitrarily, and reasons were outlined in the paper.

Rolin's, and Hjort's (1990), de®nition of the hazard process is

ZR�t� �
�t
0

dF�s�
F �s,1� :

Ours is

Z�t� � ÿ logf1ÿ F�t�g:
Either is possible, but if F is neutral to the right the jumps of ZR are bounded by 1, which might be a
handicap for modelling a continuous hazard. Z is a log-beta process, rather than a beta process, if F is a
beta-Stacy process.

We thank Rolin, and MacEachern, for pointing out a problem with Fig. 1 (there should be a mode in
the histogram at about 0.01).
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