Discussion on
Regression and Classification using Gaussian
Process priors

Pietro Muliere
Universita degli Studi di Pavia, Italy.

1 General comments

Regression is one of the most common data problems and numerous meth-
ods exist for tackling it. A nonparametric Bayesian regression model must
be based on a prior distribution over the infinite-dimensional space of possi-
ble regression functions. In this paper Neal examines the CGaussian process
approach to regression and classification.

Assume we have observed data for n cases: (%x1,%1), - - -, (Xn, yn) Where
xi = (Ti1," -, zy) is the vector of k inputs, for 1 = 1,...,n. We wish to
construct a model for this data and then to make predictions using the model.
For example, given the vector x,,; we may want to predict Yn+1-

The generative model for our data is, for every mn,

Yn = f(Xn) + U5

where f(xy,) is our modeling function and v, is some noise. In order to specify
the prior process the Author uses a Gaussian process since ¢ Gaussian process
is completely described by its mean value vector and its covariance function.

The Bayesian model thus defined is very similar to others that have ap-
peared in the literature (see: Kimeldorf and Wahba (1970a,1970b), Wahba
(1978), Wecker and Ansley (1983), Cox (1993)). Related models and appli-
cations are discussed in Diaconis (1988).

An analogous approach is followed by Liptser and Shyryayev (1972) for
discussing the Kalman-Bucy filter in the discrete and continuos case.
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It is obvious that the conceptual simplicity of Gaussian processes make
them very attractive in many applied problems. In my opinion the role of
Gaussian processes used as priors in regression or classification problems is
well understood from the methodological point of view. Of course this does
not imply that they are always computationally easy to use; this seems par-
ticularly true when the covariance function depends on unknown parameters.
With respect to this side of the problem the paper by Neal looks like a valu-
able contribution for the researcher interested in applications.

In the rest of my discussion I will try to put Neal’s work in perspective
by focusing on a few theoretical questions related to the use of Gaussian
processes in Bayesian inference.

2 How to select the prior

In practical applications the covariance function selected may or may not
be an adeguate description of our state of knowledge. Consequently I argue
that a Gaussian process seems inappropriate when the form of the covariance
function is hard to justify on the basis of what is known about the observables.
Roughly speaking it should be the problem that suggests the form of the
prior.

Along this principle, a different approach in selecting the prior considers
de Finetti style theorems which characterize models in terms of invariance.
The idea is that the statistician begins the model building phase by postulat-
ing reasonable symmetries for the distribution of observables. The theorems
then give simple descriptions of all the distributions with the given symme-
tries. Diaconis, Eaton and Lauritzen (1992) developed such theorems leading
to invariance justifications of the usual linear model, analysis of variance, and
some covariance models in multivariate analysis.

In some other practical applications the form of the predictive distribution
may be an adeguate description of our state of knowledge. Therefore, the
prior is characterized via the sequence of predictive distributions. For some
examples of this approach see Regazzini(1998) in this conference and the
references therein.



3 Covariance functions and regression mod-
els

A wide variety of covariance functions can be used in the Gaussian process
framework. Obviously different covariance functions will determine different
regression models. In order to elicit a covariance function one wants to know
what sort of regression model it generates.

The problem thus becomes: Is it possible to determine the Tegression
model starting from the covariance function ?

I will give two answers to this question.

3.1 Canonical expansions of random functions

Any random function Y(¢) can be expressed in the form:
Y(t) = m(t) + ) Vyzy(t) (1)

where: m/(t) is the mathemathical expectation of the random function ¥ii),
V, are uncorrelated random variables with zero expected values, and the
functions x,(t) are some non random functions. Representation (1) is called
canonical expansion of Y'(¢); the variables V, are the coefficients of the canon-
ical expansion while z,(t) are coordinate functions. In the general case the
canonical expansion of a random function is an infinite series but in particu-
lar cases it can be a finite sum. Expressing the random function Y (¢) by the
canonical expansion (1), the covariance function of the variables Y (¢) and
Y (t') is given by:

Cov(Y(t), Y () = 3 Doy ()70 (1), (2)

where D, are the dispersions of the random functions V.

Any representation of a covariance function by (2) is called a canonical
expansion of the covariance function. Thus the canonical expansion (2) of
the covariance function of a random variable Y (¢) follows from the canonical
expansion (1). Conversely it is possible to show that the canonical expansion,
(1) of a random function follows from the canonical expansion (2) of the
covariance function. For the construction of a canonical expansion for a
random function from the canonical expansion of its covariance function see,
for example, Chapter 9 of Pugachev (1965).
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3.2 Markovian representation of stochastic processes

Given a sequence of covariance matrices {R;,{ = 0,1,...} of a zero-mean
d-dimensional stationary stochastic process {y,} one can find a Markovian
representation of y, which is given by

Tpny1 = F:En + wy,

Yn = Hz,

where the dimension of x,,wn,F" and H are k x 1,k x 1,k x k, and p x £k,
respectively, and w, is an k-dimensional zero mean white noise. Akaike
(1975) has shown that if the covariance function B = Cov(yn, ynss),l =
0,1,..., admits a finite dimensional factorization

R, = HF'G

then the process y, has two specific Markovian representation. The state T
of one of these representations is defined as a set of mutually orthogonal ran-
dom variables which contains the full information of the past of the process
to be expressed by the present and the future, and the state of the other
representation contains the full information of the future of the process to
be expressed by the present and past. This fact is proved by using the con-
cept of canonical variables which is well developed in the field of multivariate
statistical analysis.

The problem of finding all minimal Markovian (state space) representa-
tions of a given random process is known as the stochastic realization prob-
lem. In this problem one is given a stochastic process and asked to con-
struct a stochastic system in a specified class such that the output of this
system equals the given process. The practical motivation of this problem
comes from communications and control, econometrics, time series analysis,
and other areas where model building is important. The stochastic real-
ization problem for Gaussian processes has been extensively investigated by
Lindquist,Picci and Ruckebusch (1979) and reference therein. The minimal
splitting subspace can be interpreted as a subspace of smallest size contain-
ing all the information from the past needed in predicting the future and all
the information in the future required to estimate the past. This fact make
it an obvious candidate for a state space.



4 Covariance function and spectral density

Bayesian inference of a time series generated by a stationary, discrete-time,
Gaussian stochastic process is possible parametrizing the spectral density.
Let Y(t) be a discrete time, stationary stochastic process. Given a co-
variance function, R, it can be shown that there exixts a unique, real-valued,
non-decreasing, right continuous function F defined on [—n, 7] such that

Cov(Y (), Y () = R(j) = f eaplivf)dF (w)
where j = 0,%£1,... , F(—7) = 0 and F has increments symmetric about
zero. F is called the spectral distribution function. If the spectral distribution
function is absolutely continuous with respect to Lebesgue measure on [, 7]
then given the covariance function, R, one can find an almost-everywhere
unique, real -valued, symmetric (about 0), non-negative function f defined
on [—m,x] such that

w

R() = [ eaplivg)f(w)du
where 7 = 0, £1,.... The function f is the spectral density function of R or
of the process. The converse of the above statement can be shown to be true
also.

One common way to proceed with the analvsis of a time series is to
concentrate on the analysis of the spectral density of the generating process.
A Bayesian appraoch based on the spectral density for stationary Gaussian
processes is analyzed by Shore (1980).

5 The Stochastic model

In Neal’s paper the inputs x3,Xs, -,x, are fixed and it is not clear how
to elicit the covariance function when they are a sample of random vector
X = (Xi,...,X). In fact, in this case, we need to make assumptions on the
joint distribution of (X, y).

I would like to suggest a simple nonparametric approach for solving the
problem of prediction by means of the most used process in Bayesian non-
parametrics :the Dirichlet process.



Consider a sample of n observations (x1,41),. .., (Xn, ¥s) of the random
variables (X,Y") with joint probability distribution F. Let the form of F' be
uncertain. Consider then a future observation((Xpi11, *, Xny14, Yort)),
the n 4+ 1-th , from F and suppose we wish to make inference about Y1,
modeling the relatlonshlp between the set of the explanatory variables and
the response variables ¥},,; given the past observed data. Cifarelli, Muliere
and Scarsini (1981), following an idea of Goldstein (1976), defined a good
linear predictor assuming F' is a Dirichlet process prior. Therefore they
search the Bayes predictor within the class of decision rules of the form

k
Z ‘6)1 X, n+1i
i=1
which minimizes

E n+1 Zﬁz ?n+1 |data']

where the expectation is taken with respect to the predictive distribution.
We indicate with D the matrix of order £ x k with elements

dij = E[Xp11,Xn415]data).
and with b the £ x 1 vector with elements
bi = B[ X, 541Y511|datal.
Then the optimal linear predictor is given by
)(3* - D71

Assume now that the prior for the random quantity F' is a Dirichlet pro-
cess: that is F' € D(MFp) where M > 0 is a real number and F, =
Fy(zy, 22, -, zg,y) is a proper distribution function. Fy can be interpreted
as a prior guess at F whereas M is the 'measure of faith’ in this guess. We
thus obtain:

M 2
= o
G = 3 1 PR XXs) + M+n tZ



where Efg, is the expected value with respect to the initial guess F, for F.
Hence, denoting with p = -2 the matrix D assumes the following form:

M+n
x'x
D = pEFU(X’X) + (1 — p) i
where x is the n x k matrix whose rows are the vectors x;,i = 1, ... <.

In the same way we derive the vector b:

x'y
b =pEr (XY)+ (1 - P)?

with y" = (y1,..., yn). Note that if M — oo we obtain 8* = (Ep, (X'X)) ' Ep,(XY)
whereas if M — 0 we obtain 3* = (x'x)'x'y, the ordinary least square es-
timator.

For a generalization of this approach see Luscia (1983) and Poli (1985).

6 Computation and Implementation

I would also like to comment on the practical implementation of the proposed
approach, particularly with reference to the computational aspects. I will
make a few short remarks.

e As I have already pointed out, it is important to understand which
tvpe of prior beliefs on the regression function correspond to a spe-
cific covariance function. Within the proposed approach, this becomes
quite difficult, due to the necessity of several integrations, both over
the hyperparameters and the latent variables. I thus suggest the Au-
thor to investigate, at least empirically, the input-target relationships
embodied in the proposed models (such as the three-way classification
example), for instance by means of MCMC sampling from the prior
over the hyperparameter space.

e In practical applications, there will be a potentially large amount of
explanatory inputs. It seems that the proposed model has compu-
tational difficulties to deal with this situation, essentially due to the
calculation of a large number of derivatives of the loglikelihood func-
tion as well as to the need to tune empirically many stepsizes in the
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”leapfrog updates”. These problems would persist, although in a dif-
ferent form, even using a random walk Metropolis-Hastings approach.
Thus, it seems likely that some form of pre-processing of the data,
perhaps using frequentist-based model selection methods is needed, in-
consistently with the claimed full-fledged bayesianity of the approach.
Alternatively, one may wonder whether the proposed approach could
be simplified, considering, for instance, a Markovian representation of
the stochastic process, possibly allowing a higher amount of ”local”
computations.

The proposed prior on the hyperparameters assumes their indepen-
dence or, at best, their exchangeability according to an unspecified
grouping label. I wonder whether one should consider richer priors, for
instance, including in the covariance function a dependence on input
interactions. This would compensate for (often realistic) collinearity ef-
fects, as well as allow some forms of ”borrowing strength” when doing
quantitative learning on the hyperparameters. Moreover, from a com-
putational viewpoint, a richer, possibly modular, prior would possibly
allow many computations to localise, thus improving computational ef-
ficiency. I wonder whether the architecture of a neural network would
be of help in this respect, as it is for graphical models (see e.g. Lau-
ritzen, 1996).

It would be desirable to develop some more formal methods of model
comparison and criticism. Is this possible under the current approach ?
Would not it be better to consider, instead of the full parameter space,
a varying-dimension parameter space, according to which variablles are
relevant under the current model ? I wonder if, using the latter ap-
proach, in conjunction with an appropriate Monte Carlo simulation
method, such as the reversible jump MCMC (Green, 1995) the compu-
tational efficiency of the Monte Carlo simulations can be improved.

Final remarks

We conclude reminding that inference and predictions problems in linear
models, analysis of variance, discriminant analysis are solved using a gen-
eralization of a Dirichlet process called ” mizture of products of Dirichlet
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processes” ( see: Cifarelli (1979), Cifarelli, Muliere and Scarsini (1981), Con-
sonni (1981), Muliere and Scarsini (1983)).
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