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Summary: The main objective of this paper is to propose a novel approach for model
comparisons when ROC curves show intersections. We investigate in a theoretical
framework the relationship between ROC orderings and stochastic dominance and we
propose alternative indicators that could substitute the common AUC measure.
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1. Introduction

The receiver operating characteristic (ROC) curve describes the performance of a
classification or diagnostic rule, while the area under this curve (AUC) is a common
measure for the evaluation of discriminative power; see e.g. Krzanowski et al. (2009).
When ROC curves cross each other, the AUC measure can lead to biased results and
we are not able to select the best model; see e.g. Hand (2009). Common practise is
to compare crossing ROC curves by restricting the performance evaluation to proper
subregions of scores (see e.g. Thomas, 2009). In our opinion, however, this issue should
be more adequately handled in the statistical literature.

The main objective of this paper is, therefore, to propose a novel approach - based on
stochastic dominance - for model comparisons, when ROC curves show intersections.
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2. ROC curve and stochastic dominance

Consider a classification tool that gives a real-valued score to classify items into two
categories: good or bad. Let the random variable X with c.d.f. F represent the score
and = = (x1, T2, ..., T, ) be a score profile from X with mean p(z) and variance o ().
Let X = {z : p(z) = pu} be the set of n-dimensional score profiles with mean p.

Suppose that for a prespecified cut-off ¢, item ¢ is labeled as bad if z; < ¢ and as
good otherwise. The true positive rate, or sensitivity, is Fg(c) = Pr(X < c¢|Bad),
while the false positive rate, or (1 - specificity), is Fg(c) = Pr(X < ¢|Good).!

The ROC curve is obtained representing, for any fixed cut-off value, a point in the
cartesian plane having as x-value the false positive rate and as y-value the true positive
rate. The best curve is the one that is leftmost, the ideal one coinciding with the y-
axis. Then the ROC curve is defined as a plot of {(u, ROCx (u)),u € (0,1)}, where
ROCx (u) = Fg(Fz"'(u)).

For sake of model comparisons, performance indicators based on the ROC curve
have been proposed, such as the AUC, which is defined as the integrated sensitivity over
all specificity ranges: AUC = fjoc: Fg(s)dFg(s).

If the ROC curves do not cross each other, there is an unambiguous comparison of
two diagnostic tests in terms of discriminative power and the AUC index provides con-
sistent results. The ordering induced by the ROC curves is equivalent to the first stochas-
tic dominance: ROCx (u) < ROCy (u) if and only if F(F5'(u)) < Hg(H;'(u)),
Vu € (0,1), where X and Y represent the score of two different classifiers, with c.d.f.
F and H, respectively. In symbols, we write that X >pgp Y.

In comparing two score distributions, it is of interest to investigate the transforma-
tions by which one distribution is obtained from the other. Saying that X >pgp YV
means that Y is obtained from X by a first order performance increasing (FOPI) trans-
fer, according to which the cumulative proportion of bad individuals, increasingly or-
dered according to their scores, is always higher in Y than in X.

Let us denote discriminative power index any function I : X — R. The function I
satisfies the FOPI principle of transfers if I(X') < I(Y') whenever (X,Y) isa FOPI
transfer. Obviously, AUC satisfies this principle.

3. Comparing crossing ROC curves

If two ROC curves intersect each other, the first order stochastic dominance fails and
it is not possible to employ the AUC index. Thus we move to the second order stochastic
dominance (SSD), according to which X dominates Y (in symbols, X >gsp Y) if
foz ROCx(u)du < fuz ROCYy (u)du ¥z € [0,1].

! The sensitivity is the probability of correctly classifying a bad item, while the specificity is
the probability of correctly classifying a good item.
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The SSD can be obtained from a second order performance increasing (SOPI) trans-
fer, according to which Y assigns to bad individuals the smallest scores with higher
frequency and the highest scores with smaller frequency than X .2

Here we focus on the scenario of one crossing and we say that the ROC curve of dis-
tribution X intersects that of Y once from below if and only if there exists u* € (0,1)
such that ROCx (u) € ROCy (u) Vu < w*and < for someu < u*, and ROCx (u) >
ROCy (u) Yu > u*and > for someu > u*. Figure 1 illustrates an example of inter-
secting ROC curves.

sensitivity

/

.1 - specificity

Figure 1. Intersecting ROC curves

Note that if ROCx (u) intersects once from below ROCy (u) and if |, 0“‘ (ROCy (u)—

ROCx (u))du > ful (ROCx (u) — ROCy(u))du, then X >gsp Y.

Since the AUC index may contradict with the criterion of the SSD, alternative mea-
sures are required. From Fishburn (1980), we have that the class of indices I(X) =
[ ¥(z)dFg(z), with ¢ nondecreasing and concave, is consistent with the SSD. This
class of measures provides, therefore, a coherent alternative to the AUC.

If also the SSD is violated, we refer to the third order stochastic dominance: X >7sp
Yif [ (f; ROCx (w)du) dz < [; ([, ROCy (u)du) dz Vz € [0,1].

The TSD can be obtained from a third order performance increasing (TOPI) trans-
fer, according to which in Y a SOPI transfer happens at a higher level of specificity
than in X; this criterion thus puts more weigh to smaller false positive rates.

2 In the income distribution literature, this transfer is called regressive transfer.
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A discriminative power index I is consistent with the TOPI transfer if and only if
I(Y) = I(X) with (X,Y) being a TOPI transfer. Note that the AUC index does not
satisfy this property.

In case of violation of SSD, it is still possible to compare two crossing ROC curves,
provided that the ROC curve corresponding to the score distribution with lower variance
intersects once from below the other curve; in particular, if ROCx (u) intersects once
from below ROCy (u) and if fuu‘ (ROCy (u) — ROCx (u))du < f:‘ (ROCx (u) —
ROCYy (u))du, then I(Y') > I(X) for all TOPI consistent discriminative power in-
dices I(-) if and only if 0%(y) > o?(x).

Following Fishburn (1980), we propose then a class of indices that are consistent
with the TSD. More precisely, the class of indicators I (X) = [ ¢/(z)dFg(z), where the
function %) is non-decreasing and concave with a non-negative third derivative, provides
an alternative to the AUC measure that is coherent with the T'O PI principle of transfers.

4. Concluding remarks

We have provided a novel method for checking for unanimous classifier performance
rankings when the ROC curve dominance fails. Our result does not resolve all the am-
biguous rankings associated with single crossing ROC curves; it will, however, assist a
large number of pairwise comparisons for which the AUC index is not applicable.

Next step of further research will be focused on (i) applying the inverse stochastic
dominance theory within the ROC curve framework, (ii) extending the class of dis-
criminative power indices on the basis of the Fishburn (1980)’s results, and finally (iii)
providing empirical applications of our methodologies.
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