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ABSTRACT. We consider a neutral to the right process that corresponds to the superposition of in-
dependent beta processes at the cumulative hazard level. It places a prior distribution on the survival
distribution resulting from independent competing failure times. It can be derived as the infinitesimal
weak limit of a discrete time process which has the conditional probability of an event at time t given
survival up to t defined as the result of a series of m independent Bernoulli experiments. The continuous
time version of the process, termed m-fold beta NTR process, is described in terms of completely ran-
dom measures. We discuss prior specification and illustrate posterior inference on a real data example.

1 INTRODUCTION

In this paper we review some results of De Blasi, Favaro and Muliere (2009), where a new
family of neutral to the right priors is introduced. A random distribution function F on R+ is
neutral to the right (NTR) if, for any 0≤ t1 < t2 < .. . < tk < ∞ and for any k ≥ 1,

Ft1 ,
Ft2 −Ft1
1−Ft1

, . . . ,
Ftk −Ftk−1

1−Ftk−1

(1)

are independent random variables, see Doksum (1974). NTR priors have well developed the-
oretical properties. The form of the posterior distribution and its large sample properties are
well known (see, e.g., Ferguson and Phadia (1979), Kim and Lee (2001, 2004)). These re-
sults are based on the representation of NTR priors as suitable transformations of completely
random measures (CRMs), see Lijoi and Prünster (2009) for an account on their connections
with Bayesian nonparametrics. We recall here that a CRM µ̃ onR+ is a purely atomic random
measure which admits Lévy-Khintchine representation
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for any µ̃-integrable (almost surely) real-valued function f , where ν, referred to as the Lévy
intensity, is a diffuse measure on R+×R+ such that

R
B

R
R+

min{s,1}ν(ds,dx) < ∞ for any
bounded B in R+. Doksum (1974) showed that F is NTR if and only if Ft = 1− e−µ̃((0,t]) for
some CRM µ̃ onR+ such that P[limt→∞ µ̃((0, t]) = ∞] = 1. Moreover, if F is NTR for a CRM



µ̃, then the posterior distribution of F , given (possibly) right-censored data, is described by
an NTR process for a CRM µ̃∗ with fixed atoms at uncensored observations. This is of great
importance for statistical inference, since one can resort to the simulation algorithm suggested
in Ferguson and Klass (1972) to sample the trajectories of the posterior CRM, thus obtaining
approximated evaluations of posterior distribution of F .

CRMs arise also when one considers the distribution induced by a NTR process on the
space of cumulative hazard functions, i.e. the stochastic process {Ht , t > 0} defined as Ht =
Ht(F) =

R t
0(1−Fx−)−1dFx. Let {Ft , t > 0} be an NTR process defined according to some

CRM µ̃ and let ν(ds,dx) = ν(s,x)dsdx (with a little abuse of notation) be the corresponding
Lévy intensity. Then Ht = η̃((0, t]), where η̃ is a CRM with Lévy intensity νH(dv,dx) =
νH(v,x)dvdx such that νH(v,x) = 0 for any v > 1. The conversion formula for deriving the
Lévy intensity of η̃ from that of µ̃ is

νH(v,x) = 1
1−v ν(− log(1− v),x), (v,x) ∈ [0,1]×R+ (3)

that is νH(dv,dx) is the distribution of (s,x) 7→ (1− e−s,x) under ν. Let us consider the
beta-Stacy process of Walker and Muliere (1997), which is a NTR prior with a parametriza-
tion well suited for prior specification. To this aim, let α be a diffuse measure on R+ and
β : R+ → R+ a piecewise continuous function such that

R t
0 β(x)−1α(dx)→ ∞ as t → ∞. A

beta-Stacy process {Ft , t > 0} with parameters (α,β) is NTR for a CRM µ̃ whose Lévy in-
tensity is defined by ν(ds,dx) = ds

1−e−s e−sβ(x) α(dx). Using (3), one finds that the associated
random cumulative hazard {Ht(F), t > 0} is the cumulative of a CRM with Lévy intensity
νH(dv,dx) = v−1(1− v)β(x)−1dvα(dx), which corresponds to the Lévy intensity of the beta
process of parameter (c,H0) where c(x) = β(x) and H0(t) =

R t
0 β(x)−1α(dx), see Hjort (1990).

Since the beta process has E(Ht) = H0(t) and Var(Ht) =
R t

0 [β(x)+ 1]−1dH0(x), the quantity
α/β takes the role of prior guess of the hazard rate, while β acts as concentration parameter.

In the sequel we consider a new class of NTR priors which allows a more flexible speci-
fication of prior beliefs still retaining a simple interpretation in terms of prior parameters. It
consists of a NTR process F that has Ht(F) given by the superposition of m independent beta
processes, say H1,t , . . . ,Hm,t , according to

Ft
d= 1−∏[0,t]

{
1−∑

m
i=1 dHi,x

}
, (4)

where ∏[0,t] denotes the product integral operator. Such F can be derived as the weak limit
of a sequence of discrete time NTR processes. We discuss prior specification and posterior
inference on a sample of right-censored survival data.

2 THE m-FOLD BETA NTR PROCESS

We start with a discrete time process which satisfies the independence condition in (1). Fol-
lowing the idea of Walker and Muliere (1997), we adopt a stick breaking construction: let
0 < t1 < t2 < .. . be a sequence of time points indexed by k = 1,2, . . . and define Ftk =
∑

k
j=1 Vj ∏

j−1
l=1 (1−Vl) for V1,V2, . . . a sequence of independent random variables with val-

ues in (0,1) such that limk→∞ E(1−Ftk) = ∏k≥1 E(1−Vk) = 0. For any k ≥ 1, Vk is defined
as

Vk
d= 1−∏

m
i=1(1−Yi,k) (5)



for m sequences of positive real numbers (α1,•,β1,•) := {(α1,k,β1,k),k≥ 1}, . . . ,(αm,•,βm,•) :=
{(αm,k,βm,k),k ≥ 1} and m independent sequences of random variables (r.v.s) {Y1,k,k ≥
1}, . . . ,{Ym,k,k ≥ 1} such that {Yi,k,k ≥ 1} is a sequence of independent r.v.s with Yi,k ∼
beta(αi,k,βi,k). If we define Xk = Vj ∏

j−1
l=1 (1−Vl) so that Ft = ∑tk≤t Xk, then

X1
d= V1, Xk|X1, . . . ,Xk−1

d= (1−Ftk−1)Vk, k ≥ 2 (6)

Note that Xk < 1− Fk−1 almost surely (a.s.), so that Fk ≤ 1 a.s.. Moreover, the condition
∏k≥1 ∏

m
i=1[1−αi,k/(αi,k +βi,k)] = 0 ensures that Ftk → 1 a.s. as k→ ∞ so that {Ft , t ≥ 0} is

a discrete time NTR process.
This construction includes as particular case the discrete time version of the beta-Stacy

process, see Walker and Muliere (1997, Secion 3), which has Vk ∼ beta(αk,βk). In fact, using
some known properties for the product of independent beta distributed r.v.s, for the parameter
configuration (α1,•, β•),(α2,•,β•+α1,•), . . . ,(αm,•,β•+∑

m−1
i=1 αi,•), {Ft , t ≥ 0}, is a discrete

time beta-Stacy process with parameter (∑m
i=1 αi,•,β•). Note that Vk = Xk/(1−Fk−1) is the

conditional probability of observing the event at time tk given survival up to tk. According
to (5), Vk corresponds to the minimum of m independent r.v.s Yi,k ∼ beta(αi,k,βi,k) and can
be interpreted as the result of m independent Bernoulli experiments: we observe the event
if at least one of the m experiment has given a positive result. When β1,k = βk and βi,k =
βk + ∑

i−1
j=1 α j,k, 2 ≤ i ≤ m, the minimum of independent beta r.v.s is beta distributed, hence

we recover the construction in Walker and Muliere (1997).
The next theorem establishes the existence of a continuous version of the process and

can be proved by taking the infinitesimal weak limit of a sequence of discrete time processes
defined in (5)-(6), see the proof of Theorem 2 in Walker and Muliere (1997).

Theorem 1. Let α1, . . . ,αm, m≥ 1, be diffuse measures on R+ and let β1, . . . ,βm be positive
and piecewise continuous functions defined on R+ such that

R t
0 βi(x)−1αi(dx)→ ∞ as t→ ∞

for i = 1, . . . ,m. Then, there exists a CRM µ̃ with Lévy intensity

ν(ds,dx) =
ds

1− e−s

m

∑
i=1

e−sβi(x)αi(dx). (7)

The process {Ft = 1−e−µ̃((0,t]), t > 0} is NTR so that, at the infinitesimal level, dFt |Ft
d= (1−

Ft)[1−∏
m
i=1(1−Yi,t)] where (Y1,t , . . . ,Ym,t) are independent with Yi,t ∼ beta(αi(dt),βi(t)).

We name the process {Ft , t > 0} in Theorem 1 an m-fold beta NTR process of parame-
ter (α1,β1), . . . ,(αm,βm). The definition extends to the case of αi having point masses: let
{tk,k ≥ 1} be now the sequence obtained by collecting all tk such that αi{tk} > 0 for some
i = 1, . . . ,m and let αi,c be the non-atomic part of αi. Then µ̃ has a fixed point at tk with
random masses Vk distributed according to

1− e−Vk d= 1−∏
m
i=1(1−Yi,tk), Yi,tk ∼ beta

(
αi{tk},βi(tk)

)
, (8)

while the intensity measure in (7) has αi replaced by αi,c. The beta-Stacy process is re-
covered when βi(x) = β(x)+ ∑

i−1
j=1 α j{x} for some fixed function β(·). In fact, one obtains

ν(ds,dx) = ds
1−e−s e−sβ(x)(∑m

i=1 αi,c)(dx), and 1− e−Vk ∼ beta(∑m
i=1 αi{tk},β(tk)), that is a

beta-Stacy process of parameter (∑m
i=1 αi,β), see Walker and Muliere (1997, Definition 3).



3 SUPERPOSITION OF BETA PROCESSES

We consider now the prior distribution on the space of cumulative hazard functions induced
by an m-fold beta NTR process. Let us consider the case of no fixed points of discontinuity,
so take αi absolutely continuous for any i. Then, by using equation (3),

νH(dv,dx) =
dv

v(1− v)

m

∑
i=1

(1− v)βi(x)αi(dx) =
m

∑
i=1

βi(x)v−1(1− v)βi(x)−1dv
αi(dx)
βi(x)

(9)

that is the sum of the Lévy intensities of m beta processes H1,t , . . . ,Hm,t with parameters
(ci,H0,i) where ci(x) = βi(x) and H0,i(t) =

R t
0 βi(x)−1αi(dx), i = 1, . . . ,m. It follows that H(F)

is the superposition of m independent beta processes, according to (4). In particular, F can
be seen as the distribution function of the minimum of m independent failure times, Ft =
P{min(X1, . . . ,Xm)≤ t} where P(Xi ≤ t) = 1−∏[0,t]

(
1−dHi,x

)
and Hi,x takes the interpreta-

tion of the random cumulative hazard associated to the ith failure type (ith failure-specific cu-
mulative hazard). It is interesting to see the similarity of (4) with the waiting time distribution
in state 0 of a continuous time Markov chain {Xt , t > 0} in the state space {0,1, . . . ,m} where
0 is the initial state and Hi,x is the cumulative intensity of the transition 0→ i, i = 1, . . . ,m,
cf. Andersen et al (1993, Section II.7). Then P(Xt = 0) = ∏[0,t]

{
1−∑

m
i=1 dHi,x

}
. The cu-

mulative transition intensities are constrained to ∑
m
i=1 dHi,x ≤ 1 since, conditionally on the

past, the transition out of state 0 in an infinitesimal time interval is the result of a multino-
mial experiment. However, in (4) the transition is rather the result of a series of independent
Bernoulli experiments, which is equivalent to considering a competing risks model generated
by independent latent lifetimes, see Andersen et al (1993, Section III.1.2).

We can exploit (4) for prior elicitation and express different prior beliefs for the random
failure-specific cumulative hazards {Hi,t , t > 0}. Suppose we adopt the prior specification

αi(dx) = kih0,i(x)e−H0,i(t)dx, βi(x) = kie−H0,i(t) (10)

for each of the beta processes {Hi,t , t > 0}, where h0,i is the hazard rate corresponding to H0,i.
Then we center the ith failure-specific cumulative hazard on H0,i(t) and we set the concen-
tration around H0,i according to ki, which has a prior sample size interpretation: with i.i.d.
survival times, βi(t) represents the number at risk at t in an imagined prior sample of uncen-
sored survival times, with ki the sample size , see Hjort (1990, Remark 2B). It follows that the
prior mean of the cumulative hazard is set equal to the sum E[Ht(F)] = ∑

m
i=1 H0,i(x), while

the ki’s allow to specify different degrees of prior beliefs on each of the m components H0,i.

4 ILLUSTRATION

We start with the derivation of the posterior distribution of a m-fold beta NTR process given
a set of right censored observations. Consider data (T1,∆1) . . . ,(Tn,∆n), where ∆i = 1 indi-
cates an uncensored observation. We adopt a point process formulation, which is standard in
survival analysis, by defining N(t) = ∑i≤n1(Ti≤t,∆i=1) and Y (t) = ∑i≤n1(Ti≥t). We know that
the posterior NTR process is the exponential transform of a CRM, say µ̃∗, with fixed atoms at



uncensored observations. By using Ferguson and Phadia (1979) (see also Lijoi and Prünster
(2009)) we have µ̃∗ = µ̃∗c +∑tk:N{tk}>0 V ∗k δtk , where µ̃∗c has Lévy intensity

ν
∗(ds,dx) = ds

1−e−s ∑
m
i=1 e−s[βi(x)+Y (x)]αi(dx), (11)

while the density ftk of the jump V ∗k at time point tk such that N{tk}> 0 is given by

ftk(s) = κ(1− e−s)N{tk}−1
∑

m
i=1 e−s[βi(tk)+Y (tk)−N{tk}], (12)

where κ is the appropriate normalizing constant. Note that µ̃∗c can be described in terms of a
m-fold beta NTR process with updated parameters (α1,β1 +Y ), . . . ,(αm,βm +Y ). However,
the densities ftk have not the form in (8). Upon definition of α∗i (dx) = αi(dx)+δN{x}(dx) and
β∗i (x) = βi(x)+Y (x)−N{x}, the distribution of V ∗k is a mixture of beta r.v.s:

1− e−V ∗k |I = i∼ beta(α∗i {tk},β∗i (tk)), P(I = i) =
B(α∗i {tk},β∗i (tk))

∑
m
j=1 B(α∗j{tk},β∗j(tk))

(13)

where B(a,b) is the beta function B(a,b) =
R 1

0 va−1(1− v)b−1dv.
As an illustrative example, we consider the Kaplan and Meier (1958) data set. We use a

prior specification as in (10) with m = 2, k1 = k2 = 1 and h0,i(t) = κi
λi

( t
λi

)κi−1e−(t/λi)κi , i = 1,2,
that is two hazard rates of the Weibull type. We choose λ1 = λ2 = 20, κ1 = 1.5 and κ2 = 0.5,
so that the prior process is centered on a survival distribution with non monotonic hazard
rate, see Figure 1(a) and Figure 1(b). In order to simulate from the posterior, we implement
a Ferguson and Klass algorithm (see also Walker and Damien (2000)) for the CRM µ̃∗c , while
the jumps V ∗k are generated by using the mixture of beta densities in (13). We sample 5000
trajectories from the posterior process on the time interval [0,T ] for T = 50 and we evaluate
the posterior distribution of two quantities: the probability Ft for t = 5 and the exponential-
type functional IT (µ̃∗) = [1− e−µ̃∗((0,T ])]−1 R T

0 e−µ̃∗((0,t])dt−T e−µ̃∗((0,T ]), which corresponds
to the random mean of the distribution obtained via normalization of Ft over [0,T ]. IT (µ̃∗) can
be used to approximate, for T large, the random mean of the posterior NTR process which
takes the interpretation of expected lifetimes. Figure 1(c) displays the histogram and a density
estimate of the posterior distribution of Ft for t = 5, while, in Figure 1(d), we compare the
density of the distribution of IT (µ̃∗) with the density of IT (µ̃), the latter calculated over 5000
trajectories of the prior process.
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Figure 1. (a) Hazard rate (—) and failure-specific hazard rates h0,1 (- - -) and h0,2 (-·-·-) in the prior.
(b) The same for the cumulative hazard. (c) Histogram estimate of the posterior density of Ft for t = 5.
(d) Estimate of the density of IT (µ̃∗) (—) and IT (µ̃) (- - -) for T = 50.


