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Riassunto: L’indice di concentrazione di Gini può essere utilizzato per misurare la
concentrazione dei tempi di sopravvivenza di un insieme di pazienti, e per confrontare le
distribuzioni di tempi di sopravvivenza in studi clinici. Qui presentiamo alcuni recenti
risultati relativi alla definizione di uno stimatore per una versione ristretta dell’indice di
Gini a partire da dati censurati a destra, al suo comportamento asintotico ed al suo utilizzo
in particolare, nell’ambito dei modelli di cura.
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1. Introduction

The Gini index is one of the most common statistical indices employed in social sciences
for measuring concentration in the distribution of a positive random variable; it is mainly
used in economics as a measure of income or wealth inequality among individuals
or households; see, e.g., Gini (1912, 1914), Nygard and Sandröm (1981), Kakwani
(1980). Recently, the Gini coefficient has been used to describe concentration in levels of
mortality, or in length of life, among different socio-economic groups, and to evaluate
inequality in health and in life expectancy (see, e.g., Hanada, 1983 and Shkolnikov,
Andreev and Begun, 2003).

Several tests based on the sample Gini index have been proposed in literature
for noncensored data. Rao and Goria (2004) proposed a goodness-of-fit test that
is based on the Gini index defined on spacings and showed, by simulation, that
such test has higher power than all the competitors considered for certain common
alternatives. Gail and Gastwirth (1978) and Nikitin and Tchirina (1996) considered tests
of exponentiality based on the Gini index, also revealing high power against a broad
class of alternatives. Niewiadomska-Bugaj, Kowalczyk and Ouda (2006) showed that a
two-sample nonparametric test based on Gini index and applied to rank spacings can be
more powerful than other tests based on rank spacings. The Gini concentration index has
been studied in its ability to detect orderings in distributions (see for example Nygard
and Sandröm, 1981 and Muliere and Scarsini, 1989). This, together with the good
performance of Gini-based tests in the case of no censoring, motivates our proposal in
this work of a two-sample nonparametric test based on a restricted version of such index
for right censored data.

We focus in particular on cure rate models, i.e. survival models for which a fraction
of the population never experience the event of interest; consequently, the corresponding
survival function does not approach zero, but has a positive plateau.

A number of nonparametric statistical tests have been proposed in the literature to test
the difference in survival distribution functions between groups, under the assumption
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of positive cured rate. A common family of tests is the class of weighted linear rank
tests, which includes the log-rank test, the Wilcoxon test, the Gray and Tsiatis test (see,
e.g., Harrington and Fleming, 1982 and Gray and Tsiatis, 1989). Testing for differences
between survival distributions via a concentration measure may prove more powerful than
these methods, for example when one is far from the proportional hazard structure, or even
in such a situation if the new test does not belong to the family of linear rank tests.

In the rest of this article we introduce an estimator for a restricted version of the Gini
index, describe its asymptotic distribution, and discuss some aspects that are relevant to
cure rate models. From these results we construct a new test for the equality of survival
distributions.

2. The Gini concentration index

Consider a nonnegative random variable X with cumulative distribution function F ,
F (x) = FX(x) = P (X ≤ x), survival function S, S(x) = SX(x) = 1 − FX(x),
probability density function f(x), finite expected value µ =

∫
<+ (1− F (x)) dx and

variance V ar(X). Here we will focus on X as being a survival time.
The coefficient of mean difference is defined as

δ =

∫
<+

∫
<+

|x1 − x2| dF (x1)dF (x2). (1)

The Gini coefficient of concentration for the distribution function F is defined as

G =
δ

2µ
(2)

(see Gini, 1912, 1914, or Kendall and Stuart, 1977). The formula in (2) shows that the
Gini index is invariant under scale transformations and depends on relative but not on
absolute frequencies; also, it is bounded between 0 and 1. The minimum value is reached
when everyone has the same length of life, while the maximum concentration is obtained
when one individual has the entire “amount of life” and the rest of the population dies
immediately.

Several other equivalent ways to define the Gini index exist. An alternative expression
for the Gini coefficient, that will be used throughout this paper, is given by

G =
1

µ

∫
<+

F (u)(1− F (u))du = 1− 1

µ

∫
<+

(1− F (u))2du

= 1−
∫
<+ S

2(u)du∫
<+ S(u)du

(3)

(see, e.g., Michetti and Dall’Aglio, 1957 and Hanada, 1983).
The inferential aspects of estimators of the Gini coefficient G have also been

established when data are characterized by no censoring. For each of the possible
equivalent definitions of the Gini coefficient for a population distribution F , a sample
counterpart exists, which can be computed on a sample X1, . . . , Xn drawn from F .
In particular, in Hoeffding (1948) the index G in (2) is estimated by the sample Gini
concentration index ĜH , given by

ĜH =
d

2x
,
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where d is the sample coefficient of mean difference d = 1
n(n−1)

∑
j 6=k |xj − xk| and x is

the average of the realization x1, . . . , xn of the sample.
The quantity d is the arithmetic average of the n(n − 1) absolute differences in

individual lengths of life; it assumes the maximum possible value equal to 2x̄ and the
minimum equal to 0. Note that d is asymptotically equivalent to (1) computed on the
empirical cumulative distribution function Fn(x) = 1

n

∑n
i=1 1(Xi ≤ x) instead of F (x),

that is to the arithmetic mean of the n2 terms |xj − xk|, including also the case of j = k.
The asymptotic distribution of ĜH has been discussed in Hoeffding (1948) as an

application of his general results on U -statistics.
The Gini index is a natural candidate as a test for differences in two distribution

functions when data are not censored; see, for example, the two-sample nonparametric
test based on Gini index proposed in Niewiadomska-Bugaj, Kowalczyk and Ouda (2006).

As we are interested in applying the Gini index to lifetime data, in which individuals
have finite follow-up time, it is natural to consider the following version of G:

Gt = 1−
∫ t

0
S2(u)du∫ t

0
S(u)du

, (4)

which we call the restricted Gini coefficient to distinguish it from the unrestricted Gini
index G in (3) whose integrals in the definition run from zero to infinity. The time t
represents the longest follow-up time in the data.

Note that there exist cases in which the restricted Gini coefficient Gt coincides with
the unrestricted Gini index G, such as when the event of interest occurs before time t for
all individuals. However, if at the end of follow-up there are still individuals who have not
yet experienced the event of interest, then the survival function is positive at t and Gt will
differ from G. In addition, Gt may also allow for the detection of differences in survival
distributions in situation where the scale-invariance property would make G useless: for
example, both for the exponential and for the Weibull distribution, the Gini coefficient
calculated over the entire nonnegative real line assumes a constant value, independently
of the hazard rate of the distribution. On the other hand, the restricted index Gt allows for
comparison between such survival distributions.

The difference between Gt and G becomes particularly relevant whenever the length
of follow-up does not allow the estimation of S(u) until it gets close to zero, i.e. when
follow-up is short compared to the survival times. This phenomenon is of interest in
particular for cure rate models, since in those cases a fraction of the patient population
never experiences the event, so that its survival times will necessarily be censored. These
considerations suggest the study of the restricted Gini statistic within cure rate models,
which we will discuss in Section 4.

3. Estimation and testing from right-censored data

We now turn to the problem of estimating Gt from sample censored data to test the
hypothesis of equality of two survival distributions. The sample X1, . . . , Xn is observed
only partially, in particular after random right censoring. In other words, we do not
observe the simple random sample X1, . . . , Xn drawn from the distribution F , but
rather the right censored sample (X̃i, Di), i = 1, . . . , n, where X̃i = Xi ∧ Ui and
Di = 1(X̃i = Xi) for some censoring times U1, . . . , Un, independently distributed as

– 103 –



Q and independent from the survival times. Then N(u) =
∑n

i=1 1(X̃i ≤ u,Di = 1) is
a univariate counting process with intensity process β(u) = α(u)Y (u) (i.e., it satisfies
the multiplicative intensity model structure), where the function α(u) is the hazard rate
function at time u, i.e. α(u) = f(u)/S(u), and Y (u) =

∑n
i=1 1(X̃i ≥ u) counts the

number of subjects at risk just prior to time u. Here we focus on the nonparametric
estimator of the survival function S(u).

A natural estimator for G in (3) from right censored data can be constructed by
replacing the Kaplan-Meier estimator Ŝ(u) of S(u) (see Kaplan and Meier, 1958 and
Andersen, Borgan, Gill and Keiding, 1993). As we do not consider the quantity G that
extends over the entire positive real line, but rather the quantities Gt obtained with the
integrals in the definition running from zero to a maximum finite value t <∞, we define
an estimator of the restricted Gini index for right censored data as

Ĝt = 1−
∫ t

0
Ŝ2(u)du∫ t

0
Ŝ(u)du

.

Use of Ĝt requires at first the knowledge of its distributional properties. Note that the
techniques based on U -statistics used in Hoeffding (1948) for the uncensored case do
not apply here. Under some regularity conditions, one can show that the restricted Gini
statistic for right censored data Ĝt has a normal asymptotic distribution.

Theorem 1 Consider the nonnegative function y(u) = (1−F (u))(1−Q(u−)) such that
α(u)/y(u) is integrable over [0, t], with t < ∞. For s ≤ t let σ2(s) =

∫ s
0
α(u)
y(u)

du and
J(s) = 1(Y (s) > 0), with J(s)/Y (s) = 0 whenever Y (s) = 0. Further, assume the
following:

(i) For each s ∈ [0, t], n
∫ s

0
J(u)
Y (u)

α(u)du
p→ σ2(s) as n→∞.

(ii) For all ε > 0, n
∫ t

0
J(s)
Y (s)

α(s)I
(∣∣∣√n J(s)

Y (s)

∣∣∣ > ε
)
ds

p→ 0 as n→∞.

(iii)
√
n
∫ t

0
(1− J(s))α(s)ds

p→ 0 as n→∞.

Then, as n→∞,

√
n
(
Ĝt −Gt

)
d→ N (0, τt) ,

where

τt =

∫ t

0

[
4

[νt(v)]2

W 2
t

+
[µt(v)]2V 2

t

W 4
t

− 4
µt(v)νt(v)Vt

W 3
t

]
dσ2(v), (5)

with µt(v) = µt− µv =
∫ t
v
S(u)du, νt(v) = νt− νv =

∫ t
v
S2(u)du, Wt =

∫ t
0
S(u)du and

Vt =
∫ t

0
S2(u)du.

For a proof we refer to Bonetti, Gigliarano and Muliere (2008).
Note that when censoring gets stronger (say, from Q(v) = Q1(v) to Q2(v) ≥

Q1(v)∀v) the asymptotic variance τt increases, since 1−Q2(v) ≤ 1−Q1(v) and therefore
dσ2(v) = α(v)/[(1− F (v))(1−Q(v−))] dv becomes larger in (5).
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A plug-in estimator for the approximate variance of Ĝt may be constructed by using
uniformly consistent estimators for σ2(s), Wt, Vt, µt and νt into (5). While preparing this
manuscript we have become aware that Tse (2006) has also proposed a nonparametric
estimator for the Gini index when the data are randomly right censored and left truncated,
deriving a central limit theorem for such Gini estimator. Differently from that work, which
is based on the product-limit quantile process, our result provides a clearer expression for
the asymptotic distribution of the Gini estimator, and an explicit formula for its asymptotic
variance.

From the results of Theorem 1, we construct a test for comparing two survival
functions, say S1 and S2, related, for example, to two different treatment groups. The
Gini test that we propose is aimed to test for differences in two survival distributions from
the point of view of concentration.

The Gini test statistic is

T :=

(
Ĝ1,t − Ĝ2,t

)2

V̂ ar(Ĝ1,t) + V̂ ar(Ĝ2,t)
, (6)

where Ĝj,t is the estimator of the restricted Gini index for censored data referred to the
treatment group j and V̂ ar(Ĝj,t) is the estimator of the approximate variance of Ĝj,t, for
group j, j = 1, 2. For ease of notation we drop the indication of t from the name of the
test statistic.

From Theorem 1 it follows that under the null hypothesis of equality of the two
survival distributions, the statistic T has an approximate chi-squared distribution with
1 degree of freedom, while, under any alternative to the null hypothesis, T is distributed
as an approximate noncentral chi-squared distribution with parameter of noncentrality
η = [(G1,t − G2,t)

2]/(τ1,t/n1 + τ2,t/n2), where with obvious notation τj,t indicates the
asymptotic variance of√njĜj,t and nj is the sample size of group j, j = 1, 2.

In applications, Gt can be estimated only up to the largest observed survival (or
censoring) time. As these times (say t̃1 and t̃2) are typically different between the two
treatment groups, the test statistic is constructed from Ĝ1,t̃1 and Ĝ2,t̃2 .

As mentioned above, an interesting situation in which Gt differs from G is when the
survival curve never approaches zero, i.e. under cure rate models. In the next section, we
focus on that case.

4. The Gini concentration index in cure rate models

Cure rate models are survival models that typically study diseases with positive
probability of being cured. They assume that the patient population can be split into
two groups: the noncured patients, who experience the event of interest (relapse, death,
etc.) before a given finite length of time, and the cured patients, who do not appear to be
affected by the disease even after prolonged follow-up. Examples of diseases with positive
cure rate are leukaemia, breast cancer, melanoma, head and neck cancer, non-Hodgkin’s
lymphoma, prostate cancer.

More specifically, cure rate models set a cure time t∗ so that anyone who experiences
the event of interest before t∗ is considered a noncured patient, and anyone who survives
after t∗ is a cured patient. The fraction of cured patients is indicated with θ, θ ∈ [0, 1].
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The portion (1− θ) of noncured patients experience the event of interest according to the
conditional distribution function F ∗(u) = 1 − S∗(u), while the failure time of the cured
patients is degenerate at infinity, i.e. their (improper) distribution function is constantly
equal to 0. Therefore, the survival function of the entire patient population is given by

S(u) = θ + (1− θ)S∗(u).

Common choices for conditional survival function S∗(u) are the exponential and the
Weibull distributions. We call such models traditional cure rate models. Cure rate models
have been studied extensively in the statistical literature; see, e.g., Gray and Tsiatis (1989),
Ewell and Ibrahim (1997), Halpern and Brown (1987), Laska and Meisner (1992) and
Sposto, Sather and Baker (1992).

Note that the unrestricted Gini coefficient G is not defined for distribution with infinite
mean; however, one may consider a limit of the restricted Gini coefficient Gt, which is
always defined. In particular, one can easily show that under a traditional cure rate model
the restricted Gini index Gt in (4) converges to the proportion of noncured patients as t
increases. This has a sample counterpart: as the follow-up time increases, the Gini test
becomes equivalent to the proportions test, which is based on the difference of Kaplan-
Meier estimates at time t. (See Bonetti, Gigliarano, and Muliere, 2008)

Several tests for the equality of two lifetime distributions within a cure rate model
have been proposed in literature. Gray and Tsiatis (1989) considered a family of local
alternatives based on differences in cure rates only. They compared distributions of failure
time that are characterized by same conditional distributions for the noncured patients in
both groups (i.e. S∗1(u) = S∗2(u), ∀u). They proved the optimality of their test within
the class of weighted linear rank test of the type in Tarone and Ware (1977) and Gill
(1980), with weight given by the left continuous version of the inverse of the Kaplan-
Meier survival estimator. Ewell and Ibrahim (1997) discussed a more general class of
local alternatives, according to which both the cure rates and the conditional distributions
of the noncured patients differ between the two treatment groups. They derived the large
sample distribution of the class of weighted log rank tests under such family of local
alternatives and evaluated by simulations the power of the tests under the hypothesis of
exponential conditional distributions F ∗1 and F ∗2 .

Due to lack of space we do not show here an illustration of the use of the test statistic
in (6) to a clinical dataset, nor the results from an extensive simulation study within the
setting of traditional cure rate models and generalized cure rate models (in which the
distribution of the survival times of the cured patients is not degenerate at infinity). These
will appear elsewhere.

However, the results from such simulation study suggest that the Gini index may be
useful in some situations, and that it should be considered together with existing tests (in
particular, the Log-rank, Wilcoxon, and Gray-Tsiatis tests).

5. Conclusions

We have summarized the recent results available on a restricted version of the Gini
concentration coefficient for evaluating the degree of inequality in the distribution of the
time to an event of interest within a given population. We described an estimator of the
restricted index in presence of right censored data and its asymptotic distribution, and
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proposed a consistent estimator of the corresponding asymptotic variance. We used these
results to construct a new test for differences in survival distributions, with particular
attention to cure rate models. We note that the test adjusts automatically to the censoring
pattern in the data: in the case of no censoring it becomes equivalent to the proportions
test and as such it puts all the importance on the cure rate; in case of censoring, it gives
weight to differences in the conditional distributions of the noncured patients.

Clearly, rejection of the null hypothesis of equality of the survival distributions of two
patient groups in a clinical study from the point of view of their concentration may suggest
that subgroups of patients exist for whom treatment has a strong positive (or detrimental)
effect, thus providing justification for further subgroups analyses.

Extensions of the use of the restricted Gini coefficient for censored data can
be envisioned, for example via a polarization or inequality measure. In particular,
polarization analysis detects for the presence in a given population of groups, which are
similar inside and well separated from each other (see, e.g., Gigliarano, 2007). For a fixed
number of groups an optimization method can be used to produce an optimal partition of
the <+ axis, so that the internal cohesion (as measured by the Gini index within the
groups) is maximized (see Esteban, Gradı́n and Ray, 2007, and Aghevli and Mehran,
1981). Similarly, when working with right censored survival data one may look for an
optimal partition of an interval [0, t] such that the value of the restricted Gini coefficient
within the partition is minimized. This would create a nonarbitrary partition into time
intervals having homogeneous survival.

Further directions for research may also involve the analysis of dependence of survival
on covariates, within the context of generalized Lorenz curves (see for example Muliere
and Petrone, 1992).
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