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Riassunto: In questo articolo viene presentato un approccio bayesiano non-parametrico
all’analisi dei valori estremi utilizzando un processo di Poisson non-omogeneo. La fun-
zione media del processo viene modellata a priori come un processo ad incrementi in-
dipendenti e successivamente si ottengono le corrispondenti distribuzioni a posteriori uti-
lizzando uno schema di campionamento di Gibbs.
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1. Introduction

Extreme values techniques are becoming increasingly popular in financial applications.
The complex stochastic structure of financial markets does mean, however, that simple
application of extreme value techniques can be misleading. For this reason, we have used
a Bayesian nonparametric approach to analyze the behavior of these values, that allows to
make inference and prediction on them.

We define an extreme value as an observation that exceeds a predefined threshold,u.
The idea is modeling threshold exceedances using a nonhomogeneous Poisson process
(NHPP) and to assign to the intensity of the process either log-beta process prior or ex-
tended gamma process prior. Posterior inferences are carried out via a Gibbs sampling
scheme.

2. The model

We assume that threshold exceedances (threshold choice based on the analysis of the Pois-
son process approach used in the classical theory of the extreme values) follow a NHPP
with the intensity,Λ(·), assumed to be a random measure.

The likelihood. In this section we present a detailed Bayesian analysis of NHPP, in
order to make inference on the extreme values.

Following Kuo and Ghosh (1997), let us consider a time-truncated model where the
process is observed up to a fixed timeτ . We denote the ordered epochs of then observed
jumps by0 = x0 < x1 < . . . < xn ≤ τ . If we allow ties in the observed jumps, then
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the probability of observing no jumps in the interval(0, x1), d1 jumps atx1, no jumps in
(x1, x2), and so on up to no jumps in(xn, τ), is given by

`(Λ|D, τ) =
{

n∏
i=1

[Λ(xi)−Λ(x−i )]die−[Λ(xi)−Λ(x−i )]e−[Λ(x−i )−Λ(xi−1)]

}
e−[Λ(τ)−Λ(xn)].

Here,D denotes the data anddi is the number of multiple jumps observed at timexi.
The total number of observed jumps in the interval(0, τ ] is thend =

∑n
i=1 di.

The prior. We will assign a Ĺevy additive process prior,L(·) to Λ(·) (Muliere and
Walker (2000)); in particular we used thelog-beta process(Walker and Muliere (1997)),
Λ(·) ∼ logBeP{α(·), β(·)} and theextended gamma process(Dykstra and Laud (1981)),
Λ(·) ∼ EGaP{α(·), β(·)}, defined exactly via Ĺevy process.

The prior can be characterized by

M = {t1, t2, . . .}, {ft1 , ft2 , . . .},

the set of fixed points of discontinuity together with the corresponding density func-
tions for jumps, andNt(·), the Ĺevy measure for the part of the process without fixed
points of discontinuity. We assume the Lévy measure to be of the form

dNt(ν) =
∫
[0,t] K(ν, s)ds, (1)

whereK(ν, s)ds is the Ĺevy measure kernel. In particular, if

K(ν, s)ds = 1− exp(−ν)−1exp{−νβ(s)}dα(s) (2)

thenL(·) is a log-beta process (see Walker and Muliere (1997)).
Instead, if

K(ν, s)ds = ν−1exp{−νβ(s)}dα(s) (3)

thenL(·) is an extended gamma process (see Dykstra and Laud (1981)), whereα(·) is
a continuous measure on the interval[0,∞) andβ(·) is a piecewise continuous nonnega-
tive function.

The posterior. Following Theorem 4.2 in Walker and Muliere (1997), it is possible to
deduce the following:

1. If Λ(·) is an extended gamma process then the posterior distribution given data is
also an extended gamma process;

2. If Λ(·) is a log-beta process then the posterior distribution given data is also a log-
beta process.

In particular, ifΛ(·) ∼ EGaP{α(·), β(·)}, that is, ifΛ(·) is an extended gamma process
withoutprior fixed points of discontinuity, then the posterior distribution ofΛ(·) is again
an extended gamma process with parametersα∗(·) = α(·) andβ∗(·) = β(·) + 1, and
with fixed points of discontinuity atM∗ = {x1, . . . , xn} with posterior distribution for
the jumpsf ∗xi

(ν) = Ga(ν | di, β(xi) + 1), i = 1, . . . , n (we will use (∗)to denote the
updated parameter/function).



Instead, ifΛ(·) ∼ logBeP{α(·), β(·)}, that is, if Λ(·) is a log-beta processwithout
prior fixed points of discontinuity, then the posterior distribution ofΛ(·) is again a Ĺevy
process with a log-beta measure for the continuous part, with parametersα∗(·) = α(·)
andβ∗(·) = β(·) + 1, andwith fixed points of discontinuity atM∗ = {x1, . . . , xn} with
posterior distribution for the jumpsf ∗xi

(ν) ∝ νdie−νk(ν, xi), i = 1, . . . , n, wherek(ν, s)
is given by (2).

3. Financial Application

In this section we describe how we applied the model discussed before in order to
obtain inferences on the extreme values. We have used the daily time series of Coca Cola
share price, over a 10-year period (1990-2000).

The aim of this analysis is to study the extreme values (threshold exceedances) of
a financial series. Many empirical studies on series of this type have indicated that an
approximation to stationarity can be obtained by taking logarithms of ratios of successive
observations - the so called log-daily returns.

First of all, we have used the classical theory of the extreme values to choose the opti-
mal thresholdu. To do this we have compared the two most popular used distributions: the
Generalized Pareto Distribution (GPD) and the Poisson Process characterization (Coles
(2001)), and we have analyzed the two likelihoods and their parameters estimation. By
this comparison, we have concluded that it is convenient to work with a threshold set at
u = 3.8. Therefore, the data-set consists of the times in which the stock price exceeded
this threshold. Note that the stock is considered risky when exceeding this critical level.
Then, we have used the alghoritm implemented by Gutiérrez-Pẽna and Nieto-Barajas
(2003). We assigned toΛ(·) either the log-beta process prior or the extended gamma pro-
cess prior. We centered the prior on a Weibull model, as discussed in Gutiérrez-Pẽna and
Nieto-Barajas (2003). We ran the Gibbs sampler for 5000 iterations with a burn-in period
of 1000 iterations. Convergence was based on plots ofΛ(t) for a few selected values of
t. Figure 1(a)(b) shows the data (∗), the posterior mean (continuous line), the median
(dotted line) and a 95% credible band (dashed lines) for the mean function. Figure 1(a)
shows that the posterior mean of the intensity measure is increasing as days go by: using
the log-beta process prior, the posterior mean is not much sensible to the the clusters of
the observations; while Figure 1(b) gives more about the trend of the data.

The prediction distribution is been calculated as summarize of random draws from a
Poisson distribution and it’s represented by a nonparametric histogram density estimation
of the number of exceedances in the 100 days after the observed period in Figure 2(a)(b).

It is obvious, comparing Figure 2(a) with 2(b), that the log-beta process prior gives us
more information on the future riskness of the share. On the contrary, using the extended
gamma process prior, the distribution presents a very asymmetrical trend that doesn’t
allow to get more information on the stability of the considered share.



Figure 1: Posterior mean, median and 95% band forΛ(t) (logBeP (a) and EGaP (b)).
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Figure 2: Predictive distribution of number of exceedances (logBeP (a) and EGaP (b)).
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