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1. Introduction

The massive literature regarding economic growth spurred in modern times from
the Solow model [38] where one of the basic assumptions is that the economy
is characterized by homogenous individuals (or heterogeneous individuals who
behave on average as the representative agent) and features an exogenous tech-
nological structure. On the other hand, the seminal contributions of [2] and
[36] provided a novel focus on the interaction between capital accumulation and
innovation in delivering economic growth. An extensive review of the numer-
ous contributions that followed can be found in [1, Chapters 12 & 13]. Most
of the subsequent research in the area has tried to overcome the assumption
of agents’ homogeneity and relies on models that endogenize the development
of technological progress. These assume that, when the number of innovations
grows asymptotically large, one could expect that the aggregate output variabil-
ity vanishes. Hence, the dynamics of the economy can be summarized by the
average of some endogenous variable such as, e.g., number of sectors, variety of
intermediate goods or capital accumulation. An additional stimulating account
on these models can be found in [15]. The present contribution complements
this literature and introduces a model whereby, as the economy develops, inno-
vations are distributed within and between existing and new productive sectors
and the output volatility heavily depends on such a distribution. This is there-
fore entirely novel and interesting in its own right as it leads one to identify
situations where the averages do not effectively account for the dynamics of the
economy.

In this paper we study economic growth by adopting a Bayesian nonpara-
metric viewpoint, which naturally allows for a rich probabilistic modeling and
for flexible estimation procedures via conditional (or posterior) distributions.
For our purposes, one of the main advantages of this approach is represented by
the fact that it yields intuitive and coherent prediction mechanisms for model-
ing unseen species, categories, genes but also types of economic agents, sectors,
products, technologies and, more generally, for the analysis of the impact of het-
erogeneity in economic models. An example, which is coherent with the general
framework of the paper, can be described in terms of an economy in which, at
a certain point in time, there exist k distinct sectors and n ≥ k “innovations”
have occurred. Of these innovations, n1 have taken place in the first sector, n2

in the second etc., so that
∑k

i=1 ni = n. Then, conditional on the configura-
tion of the economy as determined by the first n innovations, the prediction
rule (associated to a discrete nonparametric prior) is such that with positive
probability the (n + 1)–th innovation might happen not only in any of the al-
ready existing k sectors, but crucially also in a new sector. The latter event,
of positive probability, corresponds to creating a new sector. This possibility of
naturally incorporating the unseen is certainly one of the main reasons for the
recent success of Bayesian Nonparametrics. See [22] for a review of the discipline
and for references on applications to, e.g., biology, computer science, engineer-
ing, language models, machine learning, medicine, physics. In contrast, Bayesian
nonparametric methods have not yet been extensively exploited for economic
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applications. Among the contributions to date we mention [31, 24, 20] for finan-
cial time series, [19, 17, 29, 30] for volatility estimation, [23] for option pricing,
[5, 9] for discrete choice models, [18] for stochastic frontier models, [35, 21] for
market share and income dynamics. Emphasis in most of these papers is on
estimation, whereas we focus on modeling and perform a theoretical analysis of
the implications of realistic assumptions on the distribution of the innovations
on economic growth. In general, we will try to highlight how Bayesian nonpara-
metric models allow to treat heterogeneity in macroeconomic models delivering
accurate assessments of the uncertainty related to prediction.

We present a relatively simple model of endogenous growth, which follows the
intuition of [4]: the economy is made of different sectors, each endowed with its
own production technology. All sectors produce an homogenous output good and
the economy grows by innovations. These are stochastic events of two types: the
first type is a productivity rise in an existing sector, whereas the second type is
the creation of a new sector of production. Given the economic problem at hand,
we assume that the pace of innovations is regulated by a two-parameter Poisson-
Dirichlet process, one of the most popular nonparametric priors introduced in
[32]. For the sake of realism we only assume that innovations in a given sector
are more productive, the larger is the number of innovations that took place in
that sector and the smaller is the set of innovations in the economy as a whole.
With this setup in mind, we study the full taxonomy of the equilibria of this
stylized, although rich, endogenous growth model.
The economic implications of the analytical results of the paper can be essen-
tially summarized as follows. If the distribution of the innovations is such that:

(i) at any point in time a new sector is created with a positive probability,
whose value depends on the number of existing sectors;

(ii) given any two existing sectors having experienced ni and nj innovations,
with ni > nj , the probability of an innovation occurring in sector i is more
than proportional to ni/nj ;

then the overall output of the economy cannot be studied and therefore predicted
by looking solely at the average behaviour. The variability around the mean
needs to be taken into account and the Bayesian approach readily yields a
tool for its quantification. Moreover, it turns out that the order of magnitude
of the uncertainty about the mean depends on the structure of sector specific
technologies precisely in the way one would expect: if returns in sector specific
technologies are sufficiently concave, then innovations are more beneficial when
they create new sectors, which in turn implies a more variable output given the
contribution to the aggregate output of new sectors is more difficult to predict.

From a technical point of view, we will resort to the self–averaging condition,
a popular concept in Physics and other disciplines first used in Economics by [3],
to identify situations in which asymptotically the mean resembles the random
phenomenon at issue. Loosely speaking, a random variable—innovations in our
setup—is self–averaging if it tends to cluster around its mean as the number
of observations grows. Therefore, variables that are non–self–averaging can be
hardly summarized by their mean and models that involve them should consider
the variability as much as the mean to predict dynamics. Assumptions (i) and
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(ii) above necessarily imply that the number of sectors is non–self–averaging.
The same can be said for other quantities related to the innovation distribution
and such a behaviour is shown to carry over to the aggregate output under the
hypothesized growth model. The extent of the phenomenon is shown to explicitly
depend on the relation between two fundamental parameters of the model, the
first controlling the rate at which new sectors are created and the second tuning
the concavity of returns in sector technologies. If the latter “dominates”, the
aggregate output is highly non–self–averaging. It is worth noting that our work,
as far as its starting point is considered, is in the spirit of [4]. However, our model,
methodology and conclusions considerably differ. The perspective of this paper
not only does allow to properly identify the determinants of non–self–averaging
behaviours within endogenous growth models but also, and most importantly,
it provides the appropriate countermeasures to face such phenomena.

An outline of the paper is as follows. Section 2 provides the necessary back-
ground and setup. Section 3 introduces the models of innovations and endoge-
nous growth, provides the asymptotic results and describes how to obtain un-
certainty estimates and their concrete implementation. Section 4 contains two
major concluding remarks on the extensions of the present study: the first, of
theoretical nature, concerns the generalization of the results to innovation dis-
tributions belonging to an extremely wide class of priors, whereas the second,
of applied nature, discusses extensions to more general growth models, which
being more complex cannot be faced analytically but need to be tackled relying
on simulation studies. The Appendix contains some additional technical mate-
rial on Bayesian nonparametric models necessary for the understanding of the
proofs, which are also deferred to the Appendix.

2. The underlying framework

In this section we recall the notions of exchangeability and nonparametric prior.
We, then, introduce the two–parameter Poisson–Dirichlet process and illustrate
a few of its properties that are used in the sequel.

2.1. Quick overview on Bayesian nonparametric modelling

To sum up the main theoretical framework, suppose X(∞) = (Xn)n≥1 is a se-
quence of observations, defined on some probability space (Ω, F , P) with each
Xi taking values in a complete and separable metric space X endowed with the
Borel σ–algebra X . Later, Xi will be interpreted as the label identifying the
sector where the i–th innovation occurs, for any i ≥ 1. The customary assump-
tion in a Bayesian framework is exchangeability of the sequence X(∞), which
means that for any n ≥ 1 and any permutation π of the indices 1, . . . , n, the
probability distribution of the random vector (X1, . . . , Xn) coincides with the
distribution of (Xπ(1), . . . , Xπ(n)). The fundamental result concerning exchange-
able sequences is known as de Finetti’s representation theorem: it states that a
sequence X(∞) is exchangeable if and only if there exists a probability measure
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Q on the space PX of all probability measures on X such that, for any n ≥ 1
and A = A1 × · · · × An × X∞, one has

P
[
X(∞) ∈ A

]
=

∫

PX

n∏

i=1

P (Ai) Q(dP ) (1)

where Ai ∈ X for any i = 1, . . . , n and X∞ = X × X × · · · . The probability
Q is termed the de Finetti measure of the sequence X(∞). In other terms, (1)
states that, conditional on a random probability measure P̃ from Q, X(∞) is
a sequence of independent and identically distributed random elements with
common probability distribution P̃ , namely

Xi|P̃
iid∼ P̃ i ≥ 1

P̃ ∼ Q. (2)

In a Bayesian setup Q represents the prior distribution and the model is termed
parametric, whenever Q degenerates on a finite dimensional subspace of PX,
otherwise one has a nonparametric model. If Q( · |X1, . . . , Xn) denotes the pos-
terior distribution of P̃ given the sample X1, . . . , Xn, prediction is then achieved
by deriving explicit expressions for

P[Xn+1 ∈ · |X1, . . . , Xn] =

∫

PX
P ( · ) Q(dP |X1, . . . , Xn). (3)

If D ⊂ PX is the set of discrete probability distributions on X, we will focus on
nonparametric priors Q such that Q(D) = 1: when this happens one typically
refers to Q as a “discrete prior”, although one has to keep in mind that the
(weak) topological support of most such nonparametric Q is still the whole PX.
For an exchangeable sequence X(∞) whose de Finetti measure Q is discrete, the
sample X1, . . . , Xn contains ties with positive probability, i.e. P[Xi = Xj ] > 0
for i ̸= j. Hence, Q partitions the n data into a random number Kn of clusters
with respective (random) frequencies N1,n, . . . , NKn,n and such a partition turns
out to be exchangeable in a sense that will be made clear in the Appendix.
Even if the Bayesian nonparametric framework, as described through (1), had
been laid out by de Finetti during the 30’s, the definition of tractable priors Q
on PX represented a challenging task, completed only 40 years later with the
introduction of the Dirichlet process prior by T.S. Ferguson [14]. In the following
section we introduce the two–parameter Poisson–Dirichlet process, due to J.
Pitman [32], which represents one of the most popular priors and includes the
Dirichlet process as a special case.

2.2. The two–parameter Poisson–Dirichlet process

The two–parameter Poisson–Dirichlet process is a random probability measure
P̃ , whose realizations are discrete probability distributions and therefore it can
be represented as

P̃ ( · ) =
∑

j≥1

p̃j δYj ( · ) (4)
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where δa is the point mass at a, the p̃j ’s are random weights such that
∑

j≥1 p̃j =
1 (almost surely) and the Yj ’s are random locations in X. A simple and intuitive
procedure for assigning the random weights p̃j ’s is given by the so–called stick–
breaking construction. The rationale of the procedure is to obtain the random
probability masses p̃j through a random partition of the interval [0, 1]. To be
more precise, let (Vi)i≥1 be a sequence of independent random variables taking
values in [0, 1]. Starting from a unit length stick, break it into two bits of length
V1 and 1− V1. The first bit represents p̃1 and in order to obtain p̃2 it is enough
to split the remaining part, of length 1 − V1, into two parts having respective
lengths V2(1 − V1) and (1 − V2)(1 − V1). The former will coincide with p̃2 and
the latter will be split to generate p̃3, and so on.

We are now in a position to state the definition of two–parameter Poisson–
Dirichlet process.

Definition 1. Let (α, θ) be parameters such that α ∈ [0, 1] and θ > −α.
Moreover, (Vi)i≥1 is a sequence of independent random variables with Vi ∼
Beta(1 − α, θ + iα) and (p̃i)i≥1 are random weights defined as

p̃1 = V1, p̃i = Vi

i−1∏

j=1

(1 − Vj) i ≥ 2.

If (Yi)i≥1 is a sequence of i.i.d. random variables with non–atomic probabil-
ity distribution P0, the random probability measure in (4) is a two-parameter
Poisson–Dirichlet process, in symbols PD(α, θ), and its law Q is two–parameter
Poisson–Dirichlet process prior.

The Dirichlet process is then recovered as a particular case by setting α = 0.
The above definition presents only one of the possible constructions of this
stochastic process, probably the most intuitive but, from an analytical point of
view, not necessarily the most useful. See [34] for alternative constructions.

2.3. Self–averaging phenomena

As mentioned in the Introduction, we will investigate whether, in endogenous
growth models, the deterministic mean behaviour of aggregate output asymptot-
ically resembles its stochastic evolution, as the number of innovations increases.
In this respect, it is useful to introduce the simple self–averaging condition, first
used in Economics by [3], which allows to precisely identify situations in which
the variability vanishes asymptotically.

Definition 2. A sequence of size–dependent random variables (Zn)n≥1 is termed
self–averaging if

Var

(
Zn

E(Zn)

)
→ 0 n → ∞, (5)

and non–self–averaging otherwise.
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From (5) it becomes evident that for self–averaging macroeconomic phenom-
ena, one can focus attention on the means of the involved variables since for
sufficiently large n the residual variability of Zn, normalized by its mean, be-
comes negligible. The self–averaging condition typically holds for simple eco-
nomic models, where some assumption of symmetry or homogeneity of the in-
dividuals underlies the whole model. The concept is best clarified by looking
at an example: consider the popular Poisson model, in which for each “indi-
vidual” an event (e.g. technical progress) occurs according to a Poisson process
with parameter λ. Then, in the whole economy, which is based on n individ-
uals, the number of events Zn follows a Poisson process with rate λn. Con-
sequently, in a one–time period, we have E(Zn) = Var(Zn) = λn and one
has Var(Zn E(Zn)−1) = (λn)−1 → 0 as n → ∞. Hence, the Poisson model is
self–averaging. The same obviously holds for the Gaussian case. An equivalent
formulation of (5) can be expressed in the terms of the coefficient of variation,
C.V., as

C.V.(Zn) =

√
Var(Zn)

E(Zn)
→ 0 as n → ∞. (6)

On the other hand, for non–self–averaging models, even if the number of
agents diverges, the uncertainty about the “normalized” trajectories of Zn per-
sists. Therefore, focusing solely on the mean behaviour is not enough for de-
scribing the phenomenon at hand and some measure of the oscillations around
the mean is essential for providing a clear picture. In what follows we introduce
an endogenous growth model and show that it leads, under reasonable assump-
tions, to non–self–averaging phenomena. By deriving exact asymptotic results
we show how the mean can be combined with suitable measures of uncertainty
to fully describe the evolution of the economy.

3. Bayesian nonparametric analysis of economic growth

3.1. The distribution of the innovations

In line with a large share of the literature on endogenous growth (see, e.g., [1] and
[15]), we assume that the economy grows by innovations, which are stochastic
events of two types: the first type is represented by a productivity rise in an
existing sector, whereas the second type is represented by the creation of a
new sector. This scheme is reminiscent of the predictive structure yielded by a
discrete random probability measure that governs an exchangeable sequence of
observations (i.e. the innovations) and, hence, nicely connects with a rich body
of literature in Bayesian Nonparametrics. We first describe the distribution of
the innovations and then detail the complete growth model.

We will assume that the innovations, which occur in the economy, are gov-
erned by a two–parameter Poisson–Dirichlet model with parameters α ∈ (0, 1)
and θ > 0. Specifically, the sequence of exchangeable random variables (Xi)i≥1

represent innovations and the value of each random variable identifies the sector
in which the innovation takes place. Clearly, observing a new value of the Xi’s,
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means that a new sector has been created. Therefore, the sample X1, . . . , Xn

identifies the Kn ≤ n distinct sectors where the n innovations have occurred
and the corresponding sector labels are denoted as X∗

1 , . . . , X∗
Kn

. The j–th
sector, X∗

j , will have experienced Nj,n innovations, for j = 1, . . . , Kn, and
∑Kn

j=1 Nj,n = n. Given the outcome of the first n innovations, it is natural
to look at the (n + 1)–th and provide a probabilistic assessment of the possible
outcomes, namely the predictive distribution. In fact, the system of predictive
distributions (3) associated with a PD(α, θ) process is of the form

P[Xn+1 ∈ · | X1, . . . , Xn] =
θ + αKn

θ + n
P0( · ) +

1

θ + n

Kn∑

j=1

(Nj,n −α) δX∗
j
( · ), (7)

which means that the (n + 1)–th innovation will lead to the creation of a new
sector with probability

θ + αKn

θ + n
, (8)

whereas it will occur in any of the pre–existing sectors with probability

n − αKn

θ + n
. (9)

In particular, it will take place in the j–the sector with probability

Nj,n − α

θ + n
, (10)

for j = 1, . . . , Kn. Therefore, assuming the distribution of the innovations is
governed by a PD(α, θ), can be thought of as the innovations being sequentially
generated by the predictive scheme in (7).

Before proceeding it is worthwhile to take a close look at the implications of
the PD(α, θ) on the generation of the innovations and, thus, at the behaviour of
the economy. First, from (8) it is apparent that the probability of creating a new
sector is monotonically increasing in the number of sectors Kn created so far. In
fact, it is natural to expect a higher probability of creating a new sector within
a dynamic economy, i.e. an economy which exhibited a high sector creation rate
in the past. The second implication is more subtle and concerns the probability,
given its occurrence in an existing sector, that an innovation takes place in sector
j rather than in another sector. In this respect, the PD(α, θ) process induces a
reinforcement mechanism, which can be explained as follows. The probability of
having an innovation in one of the already existing sectors is (9), but the mass
is not allocated proportionally to the number of innovations already observed in
each sector. The probability of observing an innovation in sector j is determined
by the number of innovations Nj,n in that sector and by the parameter α,
which drives the reinforcement: one can see that the ratio of the probabilities
assigned to any pair of sectors (i, j) is given by (Ni,n−α)/(Nj,n−α). As α → 0,
the previous quantity reduces to the ratio of the number of innovations in the
sectors thus reducing to the case of homogeneity among sectors, namely the
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probability of having an innovation in each sector is proportional to the number
of innovations that have already occurred so far. On the other hand, if α > 0
and Ni,n > Nj,n, the ratio is an increasing function of α. Hence, as α increases
the probability of observing an innovation is reallocated from sector j to i.
This means that the dynamics tends to reinforce, among the existing sectors,
those having featured a higher number of innovations. In economic terms the
reinforcement mechanism driven by α can be interpreted as a measure of the
“intra-sectoral learning by doing” in innovations: if we increase the value of the
α, innovations tend to appear in those sectors where many innovations already
took place. Table 1 provides an idea of the magnitude of the reinforcement. Such
a structural feature of the innovations distribution is clearly appealing since one
would naturally expect that innovations tend to occur in the most dynamic
sectors rather than in those in which only a few innovations have taken place.
See [25, 26] for details and more discussion on the reinforcement connected to
mixture models.

Table 1
Ratio of the probabilities allocated to sector i observed Ni,n times and sector j observed only

once for different choices of α.

ni = 2 ni = 5 ni = 10 ni = 100
PD(α → 0, θ) 2 5 10 100

PD(α = 0.25, θ) 2.33 6.33 13 133
PD(α = 0.50, θ) 3 9 19 199
PD(α = 0.75, θ) 5 17 37 397
PD(α → 1, θ) → ∞ → ∞ → ∞ → ∞

Summing up, the combined effect of the two above described features, un-
derlying the PD(α, θ) assumption, imply that in a dynamic economy a lot of
new sectors will be created and the innovations within existing sectors will con-
centrate on a few of them, while the others will become less and less likely to
experience an innovation. This seems quite realistic: as the economy grows, we
observe it shifting its focus away from the sectors that become progressively
less innovative and into those sectors where innovations come to stage more and
more often. However, the probability of an innovation occurring in a neglected
sector will still be positive and it is enough that a few innovations happen in
it, for starting the reinforcement mechanism, which then could completely “re-
vive” it. On the other extreme an uninventive economy will create very few
new sectors and the distribution of the innovations will typically be much more
balanced. As explained above it is the parameter α, which tunes the extent of
such phenomena and in section 3.4 it is shown how to endogenously estimate it.

An additional feature of the model worth highlighting is the asymptotic be-
haviour of the number of distinct sectors Kn as the number of innovations n
grows. To this end, it is useful to first introduce a class of random variables,
which will appear throughout the following developments. This class of random
variables, termed generalized Mittag–Leffler random variables, is defined as fol-
lows. Let fα be the density function of a positive α–stable random variable and
define Sq to be, for any q ≥ 0, a positive random variable with density function
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one the positive real line

hSq (s) =
Γ(qα + 1)

αΓ (q + 1)
sq−1−1/α fα

(
s−1/α

)
. (11)

Then, [34, Theorem 3.8] states that

Kn

nα

a.s.−→ Sθ/α. (12)

Therefore, one has that Kn increases at a rate of nα and, moreover, the nor-
malized version of Kn converges to a strictly positive random variable. In other
words, the sequence (Kn)n≥1 is non–self–averaging, a fact first pointed out in
[3].

3.2. The endogenous growth model

We now introduce the mechanism according to which the sectors are aggregated
in order to produce the overall output, thus completing the description of our
growth model. Recall that, by the time the n–th innovation occured, the econ-
omy will consist of a random number Kn of sectors, the i–th sector will have
experienced Ni,n innovations and obviously

∑Kn

i=1 Ni,n = n. For the sake of re-
alism, we will postulate that the more productive are the innovations in a given
sector, the larger is the number of innovations that took place in that sector and
the smaller is the set of innovations in the economy as a whole. This is reflected
in the assumption that the output of sector i can be represented as

Yi,n = γNi,n/n1−τ

(13)

where γ > 1 and τ ∈ (0, 1). This is a richer functional form than what is typically
employed in endogenous growth models (see [2] and [36]). It actually has the
distinctive advantage to allow both the analysis of the effect of an innovation in
an existing sector and the assessment of the importance of the sector itself in
the overall economy and its dynamics. This is an important innovation capable
of expanding the scope of analysis in comparison with the existing benchmarks.
It is worth noting that the parameter τ tunes the concavity of the returns in
sector specific technologies and, in conjunction with the parameter α of the
PD(α, θ) process, will play a crucial role in quantifying the contribution of the
existing sectors w.r.t. new sectors to the aggregate output of the economy. τ
can be interpreted as the severity of diminishing returns in the total number
of innovations in the economy n. The larger is τ , the more beneficial is an
additional innovation in the existing sector i. This feature will become apparent
in the presentation of the asymptotic results that follow in Section 3.3. Moreover,
we will concentrate our attention on the case of γ close to 1, which is realistic
in many situations. Therefore we can approximate (13) with

Yi,n ≈ 1 + β
Ni,n

n1−τ
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where β = log(γ) > 0. Hence, the aggregate output of the economy after n
innovations, which is the sum of the outputs of the Kn sectors, is

Zn =
Kn∑

i=1

Yi,n ≈ Kn + β nτ (14)

which shows that Kn is the contribution to the aggregate output of the number
of sectors and that nτ is the contribution of the innovations within sectors.

It is worth remarking that (14) allows us to develop a sound and intuitive
analysis of the the asymptotic behaviour of the aggregate output Zn, as the
number of innovations, n, grows. This is detailed in the next section and is
in the spirit of [4]. However, in that paper the authors assume a model for
which the aggregate output turns out to be Zn = Kn +βn. Unfortunately, such
a formulation is misleading since it does not generate the non self–averaging
behaviour of Zn that the authors in [4] were willing to point out. In contrast,
the additional flexibility gained by the single sector output specification, (13),
allows us to cover both self–averaging and non self–averaging behaviours of the
aggregate output.

3.3. Asymptotic analysis of the growth model

3.3.1. The unconditional case

We start our asymptotic analysis by considering a simplistic scenario, which
is however useful for the understanding of the following main result. Here the
economy is assumed to start from scratch and it is investigated how aggregate
output evolves over time. Specific features of the economy and, in particular its
history up to present, which one would obviously like to incorporate into the
model, are ignored for the moment. Since in the following we will study the
model from a Bayesian nonparametric viewpoint, i.e. conditional on the data,
we will refer to this situation as the “unconditional” case.

The following result provides a complete taxonomy of the different asymp-
totic regimes arising in this unconditional setup. The various possible cases
correspond to different choices of the parameters τ and α of the model. In par-
ticular, α > τ means that the contribution to aggregate output from innovations
represented by the creation of new sectors are more beneficial than those within
an existing sector. This can either be due to the fact that the returns of sector
specific technologies are highly concave, which would imply a low value for τ , or
due to a particularly high rate of creation of new sectors, which would lead to
a large value for α. If α < τ one has exactly the opposite situation. Finally, the
case in which α = τ defines an economy where concavity of productivity rises
in existing sectors and ability to create new sectors balance each other out.

The next result provides the mean of the aggregate output and quantifies the
oscillations around this trend. It states that, when contributions to the economy
given by the introduction of new sectors are at least as relevant as those given
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by the existing sectors, the oscillations around the trend do not vanish asymp-
totically. This means that economy presents a non–self–averaging behaviour. On
the other hand, when new sectors are less relevant in terms of contributions to
the aggregate output, the economy can be exhaustively described by its mean
E[Zn], which is in agreement with the usual macroeconomic attitude to consider
aggregate average quantities.

Proposition 1. Under the growth model (14) with innovations following a two
parameter Poisson Dirichlet process, we have

E[Zn] =
(θ + α)n

α (θ + 1)n−1
− θ

α
+ βnτ , (15)

where (a)n = a(a + 1) . . . (a + n − 1) is the n–th ascending factorial of a, with
(a)0 ≡ 1. Moreover,

(i) If α = τ = υ,
Zn

nυ
→ Sθ/α + β a.s.

where Sq is a generalized Mittag–Leffler random variable defined in (11),
and Zn is non–self-averaging.

(ii) If α = υ > τ ,
Zn

nυ
→ Sθ/α a.s.

where Sq is a generalized Mittag–Leffler random variable defined in (11),
and Zn is non–self-averaging.

(iii) If τ = υ > α,
Zn

nυ
→ β a.s.

and Zn is self-averaging.

The main question arising from Proposition 1 is, what one should do in non–
self–averaging cases, which have been shown to arise systematically in presence
of highly dynamic economies. A drastic answer could be that of rejecting com-
pletely the typical macroeconomic approach which relies on the analysis of ag-
gregate average quantities. However, we do not believe this to be the correct
way of proceeding. Instead, we propose to combine the study of the mean be-
haviour with a measure of uncertainty and the natural tool in this framework is
represented by the asymptotic highest posterior density (HPD) intervals of the
limiting random variable, which represent the Bayesian counterpart to frequen-
tist confidence intervals. In this way one can accompany the mean behaviour
with an appropriate uncertainty estimate. In Section 3.4 we show how to derive
such approximate HPD intervals.

Finally we note that a model leading to Zn = Kn + βn, as in [4], is such
that Zn/nα diverges and C.V.(Zn/nα) → 0, as n → ∞. Hence, the process
would actually be self–averaging. On the contrary, Proposition 1(i)–(ii) shows
that our model (13) is well–grounded and flexible since it is able to capture also
the important case of non–self–averaging behaviours of the aggregate output.
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3.3.2. The conditional case

Let us now move from the simplistic model towards a more realistic one, which
incorporates the status quo of the economy and studies the asymptotic be-
haviour of the aggregate output conditional on the state of the economy at any
specific point in time. By “state of the economy” here we mean the number of
sectors and the partition of the innovations among them. Given these data, we
will be able to focus on the contribution to the aggregate output generated by
sectors that will emerge only in the future. This is clearly the most interesting,
and hardly predictable, scenario. From a mathematical point of view this cor-
responds to predicting the future behaviour conditionally on a given state of
the world X1, . . . , Xn. Therefore, we now assume the status quo as given (i.e.
X1, . . . , Xn have generated Kn = j sectors with respective frequencies of in-
novations (N1,n, . . . , Nj,n) = (n1, . . . , nj)) and investigate the aggregate output
of new sectors that will be determined by future innovations. By the time the

m–th innovation occurs, there will be a random number K(n)
m = Km − Kn of

new sectors in the economy, where the i–th will have experienced Si innova-
tions. In this model, not all innovations will occur within new sectors: indeed,
∑K(n)

m
i=1 Si = L(n)

m represents the number of innovations, which take place in the

new sectors and m − L(n)
m are the innovations taking place the “old” sectors,

i.e. the sectors existing already at present. Therefore, the output of the i–th new
sector is of the form

Y ∗
i,m = 1 + β

Si

m1−τ
i = 1, . . . , K(n)

m

where β > 0 and τ ∈ (0, 1). The conditioning sample enters the previous defini-

tion through K(n)
m . The aggregate output of the K(n)

m new sectors is then given
by

Z∗
m = K(n)

m + β
L(n)

m

m1−τ
(16)

Proceeding along the same lines as in Section 3.3.1, the stochastic innovations
are governed by a PD(α, θ) process with parameters α ∈ (0, 1) and θ > 0. With
this setup in mind, we study the full taxonomy of the equilibria of this stylized,
although rich, endogenous growth model. In particular, the following main result
provides the mean of the conditional aggregate output of the new sectors and
shows that non–self–averaging appears under any assumption on the innovation
parameter α and on the structural parameter τ . Recall, further, that X1, . . . , Xn

describes the state of the world after n innovations, which generated Kn = j
sectors and innovation frequencies (N1,n, . . . , Nj,n) = (n1, . . . , nj).

Proposition 2. Under the growth model (16) with innovations following a two
parameter Poisson Dirichlet process, we have

E[Z∗
m | X1, . . . , Xn] =

(
j +

θ

α

) {
(θ + n + α)m

(θ + n)m
− 1

}
+ β

θ + jα

θ + n
mτ . (17)

Moreover, as m → ∞ the following holds true:
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(i) If α = τ = υ,

(Z∗
m|X1, . . . , Xn)

mυ
→ Un,j + β Bθ+αj,n−αj a.s.

where Un,j
d
= Bj+θ/α, n/α−j S(θ+n)/α, Sq is a generalized Mittag–Leffler

random variable with density (11), Ba,b is a beta random variable with
parameters (a, b) and the random variables Bj+θ/α, n/α−j and S(θ+n)/α

are independent. Hence, the model is non–self-averaging.
(ii) If α = υ > τ ,

(Z∗
m|X1, . . . , Xn)

mυ
→ Un,j a.s.

and the model is non–self-averaging.
(iii) If τ = υ > α,

(Z∗
m|X1, . . . , Xn)

mυ
→ β Bθ+αj,n−αj a.s.

and the model is non–self-averaging.

Some comments are in order at this point. The previous result shows that,
by complicating the model so to adhere more closely to realistic assumptions,
non–self–averaging behaviours appear even more frequently. The various cases
are not anymore distinguished by the fact of being or not self–averaging phe-
nomena. All of them are non–self–averaging and they differ only in the order
of magnitude of the non–self–averaging behaviour. Specifically, when the cre-
ation of new sectors is at least as relevant (α ≥ τ) to the economy than rises
of productivity within already created sectors, asymptotically the oscillations
around the aggregate trend are dictated by a random variable taking values in
R+. In the opposite case (α < τ), the limiting random variable takes on values
in (0, 1), which means that the oscillations are remarkably more mitigated but
nonetheless present. If we keep the economic interpretation in mind, we conclude
that the asymptotic degree of aggregate volatility depends on the speed at which
new sectors are created in comparison with the degree of the diminishing returns
present in existing sectors. A “more” dynamic economy – in the sense of new
sectors creation – is also more likely to display higher volatility. This represents
a clear sign that one cannot confine herself to studying mean behaviours but
has to take the associated variability into account. The natural solution to this
issue is to associate asymptotic HPD intervals, as measure of uncertainty, to
the mean quantities. Therefore, the indication which clearly emerges from our
analysis is that the usual way of proceeding in macroeconomics is legitimate as
long as it is combined with suitable measures of uncertainty.

3.4. Asymptotic HPD intervals and parameter estimation

In this section we show how one can associate HPD intervals to the mean pre-
dictions to measure uncertainty. This is quite straightforward and makes use of
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the rich probabilistic structure underlying Bayesian nonparametric models. The
method is illustrated on this specific growth model but the idea is in principle ap-
plicable to any type of macroeconomic aggregation procedure with well–defined
stochastic components and concretely applicable in cases, where one is able to
work out the asymptotic regime.

Suppose to have an asymptotic result of the type Wn/r(n) → V as n diverges,
where r is a suitable function of n. The determination of the asymptotic HPD
intervals is as follows: take the x–order HPD interval (v1, v2) of V i.e. (v1, v2)
such that v2 − v1 is minimal under the condition P(v1 < V < v2) ≥ x; then the
x–order asymptotic HPD interval for Wn, for any finite sample size n, is given
by (v1r(n), v2r(n)).

Turning back to our framework, we show how to concretely determine the
asymptotic HPD intervals for Zn in our growth models. By applying the above
procedure, their derivation is straightforward except for the determination of the
quantiles of a generalized Mittag–Leffler random variable Sq or of some transfor-
mation of it. From an analytical point of view the task seems overwhelming and
therefore we show how one can generate random variates from Sq by adapting
arguments in [12]: the output can then be used for evaluating quantiles of Sq

as well as of its transformation like those appearing in Proposition 2. The basic

idea consists in setting Wq = S−1/α
q so that Wq has density function given by

f(w) =
αΓ(qα)

Γ(q)
w−qα fα(w) =

α

Γ(q)
fα(w)

∫ ∞

0
uqα−1 e−uw du

Via augmentation, one then has

f(u, w) =
α

Γ(q)
fα(w) uqα−1 e−uw = f(u)fα(w|u)

where f(u) is the density function of a r.v. Uq such that Uα
q ∼Gamma(q, 1), and

fα(w|u) = fα(w) e−uw+uα

.

This means that, conditional on Uq, Wq is a positive tempered–stable random
variable, according to the terminology adopted in [37]. In order to draw samples
from it, a convenient strategy is to resort to the series representation derived in
[37], which, in our case, yields

Wq|Uq
d
=

∞∑

i=1

min
{

(aiΓ(1 − α))−1/α , ei v1/α
i

}
(18)

where ei
iid∼ Exp(Uq), vi

iid∼ U(0, 1) and a1 > a2 > · · · are the arrival times
of a Poisson process with unit intensity. An efficient and clever alternative for
generating Wq, conditionally on Uq, is an exact sampler for exponentially tilted
positive stable random variables derived in [10]. Other possibilities are the in-
verse Lévy measure method as described in [13] and a compound Poisson ap-
proximation scheme proposed in [7].
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With such algorithm at hand, it is straightforward to describe the growth
model via E(Zn) combined with the corresponding HPD intervals, which ac-
count for the persisting uncertainty due to the non–self–averaging nature of the
phenomenon at issue.

The theoretical asymptotic study clearly represents the main contribution of
the paper. However, it may be some interest also to derive concrete predictions
based on the studied growth model. To this end only one ingredient is missing,
namely a method for specifying the endogenous parameters (α, θ), since the pa-
rameter τ has to be provided exogenously by an expert. To this end we first recall
that to a (single) sample (X1, . . . , Xn) there corresponds a certain partition (into
Kn = j sectors with frequencies of innovations (N1,n, . . . , NKn,n) = (n1, . . . , nj))
such that its probability equals

∏j−1
i=1 (θ + iα)

(θ + 1)n−1

j∏

r=1

(1 − α)nr−1 (19)

under a PD(α, θ) process. See [32]. This partition distribution represents one of
the most important instances of exchangeable partition probability distribution.
See the Appendix for details. Having (19) at hand, the most natural way to
specify the parameters (α, θ) consists in adopting an empirical Bayes procedure,
which suggests to fix (α, θ) so to maximize (19) corresponding to the observed
sample (j, n1, . . . , nj). In other words (α, θ) result from

(α̂, θ̂) = arg max
(α,θ)

∏j−1
i=1 (θ + iα)

(θ + 1)n−1

j∏

r=1

(1 − α)nr−1. (20)

To fix ideas consider a dynamic economy in which n = 100 innovations featuring
k = 50 sectors with innovation frequencies n1 = 20, n2 = 16, n3 = n4 = n5 =
n6 = 5, n7 = . . . = n50 = 1. The empirical Bayes estimate resulting from (20)
would then be (α̂1, θ̂1) = (0.86, 0.1). It is worth noting that the more dynamic
the economy, i.e. the more new sectors it is creating, the larger α̂ will be: this
is apparent from (8), which is monotonically increasing in α.

4. Concluding remarks

In this paper we have analyzed in some details the uncertainty related to growth
models with stochastic innovations. We have shown that the variability asso-
ciated to the average behaviour of the economy cannot be neglected and, in
general, it depends on the rate at which innovations take place in new produc-
tive sectors. Technically, it can be effectively quantified by means of highest
posterior density intervals. The envisaged future developments of the present
contributions are both theoretical and applied.

From a theoretical point of view it is important to extend the findings to
innovations distributions regulated by other nonparametric priors. For most
applications the two parameter Poisson–Dirichlet process is already rich and
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flexible enough in terms of both topological support and prediction structure.
Nonetheless, from a theoretical viewpoint, one would like to confirm that non–
self–averaging behaviours are actually even more wide–spread phenomena. In
fact, it would be very interesting to ascertain whether Propositions 1 and 2
also hold, up to suitable transformations of the limiting random variable, for
the wider class of Gibbs–type priors introduced in [16], which includes the two
parameter Poisson–Dirichlet process as a special case. See [8] for a review of
Gibbs–type priors from a Bayesian perspective.

From the applied economic point of view, we set the stage to allow the endoge-
nous growth model to include additional variables of interest and this enables
prediction of more complex growth behaviour of the economy and it reduces
the distance between the model and reality. Such a task will necessarily have
to be simulation based since an analytical asymptotic study beyond the present
growth model setting appears to be overwhelming, especially in the conditional
case. However, taking roots in the analytical results of the present paper, it is
worth continuing this research line also along a more applied path: given any
growth model depending on Kn productive sectors and other variables, it should
actually be quite straightforward to devise a simulation algorithm which allows
to investigate the asymptotic regime inherited by the overall economy in terms
of both aggregate and sector–specific growth and volatility. Consistently with
the proposed perspective, we also believe that the non–self–averaging nature
of Kn should carry over to the dynamic behavior of the economy as a whole.
Therefore, the indication would be once again to combine the analysis of the av-
erage aggregate behaviour with uncertainty quantification by means of highest
posterior density intervals.

Appendix A

A.1 Exchangeable random partitions

Here we briefly recall some basic concepts on exchangeable random partitions
and the corresponding notations to be used in the following Proofs. As men-
tioned in Section 2.1, if Q in (1) puts positive mass on a set of elements D in PX
that are discrete, ties appear among X1, . . . , Xn with positive probability, i.e.
P[Xi = Xj ] > 0 for i ̸= j. Correspondingly, define Ψn to be a random partition
of {1, . . . , n} such that any two integers i and j belong to the same set in Ψn

if and only if Xi = Xj . Let k ∈ {1, . . . , n} and suppose {C1, . . . , Ck} is a par-
tition of {1, . . . , n} into k sets Ci. Hence, {C1, . . . , Ck} is a possible realization
of Ψn. A common and sensible specification for the probability distribution of
Ψn consists in assuming that it depends on the frequencies of each set in the
partition but not on the actual values of X1, . . . , Xn. In terms of the de Finetti
measure in (2) this is implied by assuming P̃ to belong to the class of species

sampling models [34] i.e. P̃
d
=

∑
i≥1 p̃iδYi such that the random weights p̃i’s are

independent from the locations Yi, which are i.i.d. from a non–atomic P0. The
two parameter Poisson–Dirichlet process and the general class of Gibbs–type
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priors are species sampling models. Indeed, this framework perfectly fits to our
purposes since we are not much interested in the labels Xi identifying sectors
where innovations take place. Our focus, instead, is on the probability that an
economy experiencing n innovations will end up consisting of k distinct sectors
with the innovations themselves being distributed among the k sectors accord-
ing to the frequencies (n1, . . . , nk). In particular, let 1 ≤ k ≤ n and introduce
the set

∆n,k :=

{
(n1, . . . , nk) : ni ≥ 1,

k∑

i=1

ni = n

}
.

where each element (n1, . . . , nk) in ∆n,k is known as a composition of [n]. If
ni = card(Ci), then (n1, . . . , nk) ∈ ∆n,k and

P[Ψn = {C1, . . . , Ck}] = Π(n)
k (n1, . . . , nk). (A.1)

We are now in a position to recall the following important concept introduced
in [32].

Definition 3. Let (Xn)n≥1 be an exchangeable species sampling sequence, name-
ly a sequence for which (2) holds true, with P̃ a species sampling model. Then,

{Π(n)
k : 1 ≤ k ≤ n, n ≥ 1} with Π(n)

k defined in (A.1) is termed exchangeable
partition probability function (EPPF).

Note that an EPPF determines the distribution of a random partition of
N. From the above definition it follows that, for any n ≥ k ≥ 1 and any

(n1, . . . , nk) ∈ ∆n,k, Π(n)
k is a symmetric function of its arguments, namely

Π(n)
k (n1, . . . , nk) = Π(n)

k (nπ(1), . . . , nπ(k))

for any permutation π of (1, . . . , k), and it satisfies the consistency property

Π(n)
k (n1, . . . , nk) = Π(n+1)

k+1 (n1, . . . , nk, 1) +
k∑

j=1

Π(n+1)
k (n1, . . . , nj + 1, . . . , nk).

(A.2)
formalizing the fact that the partition of X1, . . . , Xn can be recovered from the
partition of X1, . . . , Xn+1 by dropping Xn+1. On the other hand, as shown in
[32], every non–negative symmetric function satisfying (A.2) is the EPPF of
some exchangeable sequence. See [32, 34] for a thorough and useful analysis of
EPPFs.

As for the PD(α, θ) process, which is a main ingredient of our model, the

EPPF Π(n)
k (n1, . . . , nk) is given by (19). If one denotes by mj ≥ 0, j = 1, . . . , n

the number of sets in the partition which contain j objects or, within our setup,
the number of sectors where j innovations occurred out of the total number
n. Then, by considering all possible samples generating a certain configuration
(m1, . . . , mn), from (19) one immediately obtains Pitman’s sampling formula,
which is given by

Π∗
k,n(m1, . . . , mn) = n!

∏k−1
i=1 (θ + iα)

(θ + 1)n−1
∏n

i=1 mi!

n∏

i=1

[
(1 − α)i−1

i!

]mi

(A.3)



A BNP approach to economic growth 2197

for any n ≥ 1 and m1, . . . , mn such that mi ≥ 0,
∑n

i=1 i mi = n and
∑n

i=1 mi =
k. The above expression represents a two parameter generalization of the cel-
ebrated Ewens’ sampling formula [11], which is a cornerstone of population
genetics and can be recovered by letting α → 0 in (A.3). It is important to
note that, given (19), the determination of the predictive distributions in (7) is
straightforward since

P[Xn+1 = new sector label | X1, . . . , Xn] =
Π(n+1)

k+1 (n1, . . . , nk, 1)

Π(n)
k (n1, . . . , nk)

P[Xn+1 = j–th sector label | X1, . . . , Xn] =
Π(n+1)

k (n1, . . . , nj + 1, . . . , nk)

Π(n)
k (n1, . . . , nk)

From (19) one also obtains the distribution of the number of distinct sectors Kn

yielded by n innovations that have occurred in the economy. In [16] it is shown
that

P[Kn = k] =

∏k−1
i=1 (θ + iα)

αk (θ + 1)n−1
C (n, k;α) k = 1, . . . , n,

where

C (n, k;α) =
1

k!

k∑

j=0

(−1)j

(
k

j

)
(−jα)n

is a generalized factorial coefficient. See [6] for an exhaustive account on factorial
coefficients.

Appendix B: Proofs

Proof of Proposition 1. The proof is straightforward. It follows by combining
the moment formula (3.13) in [34], the asymptotics of Kn as recalled in (12)
and standard limiting arguments.

Proof of Proposition 2. We start by considering the limiting behaviour of

K(n)
m := Kn+m −Kn, which is one of the two components the aggregate output

(16) is made of, as m increases. Clearly, K(n)
m represents the number of new

sectors created as a result of innovations ranging from the (n + 1)–th to the
(n + m)–th. The proof strategy is as follows: we first mimic the arguments of

[12] in order to establish that K(n)
m /mα, conditional on a sample (X1, . . . , Xn),

converges a.s. as the number of innovations m grows. Then we determine the
moments of the limiting random variable and show that the limiting random
variable is characterized by its moments. Finally, the asymptotic behaviour of
the second component of the aggregate output is studied and the two bits com-
bined to achieved the desired result.

First note that, as shown in [27, 28], Kn is a sufficient statistics for pre-
dictions over an additional sample (Xn+1, . . . , Xn+m) for any m ≥ 1. Hence,
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in particular, (K(n)
m |X1, . . . , Xn) is equal in distribution to (K(n)

m |Kn) and the
same holds for similar quantities considered in the sequel.

Let P (n)
α,θ be the conditional probability distribution of a PD(α, θ) process

given Kn. Hence, P (n)
α,θ is absolutely continuous with respect to P (n)

α,0 on F (n)
m :=

σ(Xn+1, . . . , Xn+m), for any m ≥ 1, and one can compute the likelihood ratio

M (n)
α,θ,m :=

dP (n)
α,θ

dP (n)
α,0

∣∣∣∣
F (n)

m

=
q(n)
α,θ(K

(n)
m )

q(n)
α,0(K

(n)
m )

where, by virtue of [28, Proposition 1],

q(n)
α,θ(k) =

αk( θ
α + Kn)k

(θ + n)m

for any integer k∈{1, . . . , m} and q(n)
α,θ(0):=1/(θ+n)m. Hence (M (n)

α,θ,m, F (n)
m )m≥1

is a P (n)
α,0 –martingale and, by a martingale convergence theorem,

P (n)
α,0

[
lim

m→∞
M (n)

α,θ,m = M (n)
α,θ

]
= 1

where M (n)
α,θ is an integrable random variable. One further has that F (n)

m ↑
F (n)

∞ = σ(Xn+1, Xn+2, . . .), as m → ∞, and P (n)
α,θ is still absolutely continuous

with respect to (w.r.t.) P (n)
α,0 on F (n)

∞ . This implies that M (n)
α,θ is the Radon–

Nikodým derivative of P (n)
α,θ w.r.t. P (n)

α,0 on F (n)
∞ and, then, E(n)

α,0[M
(n)
α,θ ] = 1 where

E(n)
α,0 denotes the expected value w.r.t. P (n)

α,0 . Use of the Stirling approximation

Γ(a + n)/Γ(b + n) ∼ na−b, as n → ∞, easily leads to show that

M (n)
α,θ,m ∼ Γ(θ + n)Γ(Kn)

Γ(n)Γ
(
θ
α + Kn

)
(

K(n)
m

mα

)θ/α

almost surely, as m → ∞. Hence (K(n)
m /mα)θ/α converges P (n)

α,0 –a.s. to a random
variable, say Un,j such that

E(n)
α,0

[
Uθ/α

n,j

]
=

Γ(n)Γ
(
θ
α + Kn

)

Γ(θ + n)Γ(Kn)
.

In order to identify the distribution of the limiting random variable Un,j

w.r.t. P (n)
α,θ , we consider the asymptotic behaviour of E[(K(n)

m )r | Kn] as m → ∞,
for any r ≥ 1. According to the posterior characterization given in [33, Corol-
lary 20], the PD(α, θ) process conditional on n innovations that have created
j sectors, labeled as X∗

1 , . . . , X∗
j and with innovation frequencies (n1, . . . , nj),

coincides in distribution with the random probability measure

j∑

i=1

wiδX∗
i

+ wj+1 PD(α, θ + jα)
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where wj+1 = 1 −
∑j

i=1 wi and the random vector (w1, . . . , wj) has a j–variate
Dirichlet distribution on the unit simplex with parameters (n1 − α, . . . , nj −
α, θ + jα). It then turns out that if w ∼ Beta(θ + jσ, n − jσ), one has

E
[
(K(n)

m )r
∣∣Kn = j, w

]
=

m∑

i=0

(
m

i

)
wi(1 − w)m−i E [Kr

i ] (B.1)

where the unconditional moment E [Kr
i ] is evaluated w.r.t. a PD(α, θ + jα)

process. The expression (B.1) is already available from [39] and it is given by

E [Kr
i ] =

r∑

ν=0

(−1)r−ν

(
1 +

θ + jα

α

)

ν

S

(
r, ν;

θ + jα

α

)
(θ + jα + να + 1)i−1

(θ + 1)i−1

where S is the non–central Stirling number of the second kind. See, e.g., [6].
Hence, one has

E
[
(K(n)

m )r
∣∣Kn = j

]

=
Γ(θ + n)

Γ(θ + jα)Γ(n − jα)

∫ 1

0
wθ+jα−1(1 − w)n−jα−1E

[
(K(n)

m )r
∣∣Kn = j, w

]
dw

=
Γ(θ + n)

Γ(θ + jα)Γ(n − jα)

r∑

ν=0

(−1)r−ν

(
1 +

θ + jα

α

)

ν

S

(
r, ν;

θ + jα

α

)
×

×
m∑

i=0

(
m

i

)
(θ + jα + να + 1)i−1

(θ + 1)i−1

∫ 1

0
wθ+jα+i−1(1 − w)n−jα+m−i−1dw

=
1

(θ + n)m

r∑

ν=0

(−1)r−ν

(
1 +

θ + jα

α

)

ν

S

(
r, ν;

θ + jα

α

)
θ + jα

θ + jα + να
×

×
m∑

i=0

(
m

i

)
(θ + jα + να)i(n − jα)m−i

=
1

(θ + n)m

r∑

ν=0

(−1)r−ν

(
θ

α
+ j

)

ν

S

(
r, ν;

θ + jα

α

)
(θ + n + να)m, (B.2)

where the last equality follows by an application of the Chu–Vandermonde for-
mula. See, e.g., [6]. Note, that for r = 1, we have

E[K(n)
m | Kn = j] =

(
j +

θ

α

) {
(θ + n + α)m

(θ + n)m
− 1

}
, (B.3)

The asymptotic moments are then derived by letting m → ∞ in (B.2). Resorting
again to the above–mentioned Stirling approximation we have

1

mrα
E
[
(K(n)

m )r
∣∣Kn

]
→

(
Kn +

θ

α

)

r

Γ(θ + n)

Γ(θ + n + rα)
=: µ(n)

r . (B.4)
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Clearly such a moment sequence arises by taking Un,j
d
= Bj+θ/α, n/α−j S(θ+n)/α,

with the beta random variable Bj+θ/α, n/α−j independent from S(θ+n)/α, which
has density (11). Hence, we are left with showing that the distribution of Un,j

is uniquely characterized by the moment sequence {µ(n)
r }r. In order to establish

this, one can evaluate the characteristic function of Un,j which, at any t ∈ R,
coincides with

Φ(t) = E
[
eitUn,j

]

=
Γ
(
θ+n
α

)

Γ
(
Kn + θ

α

)
Γ
(

n
α − Kn

) Γ(θ + n + 1)

Γ
(
θ+n
α + 1

)

×
∫ ∞

0
eitz zKn+ θ

α−1

∫ ∞

z
w (w − z)

n
α−Kn−1fα(w)dwdz

=
αΓ(θ + n)

Γ
(
Kn + θ

α

)
Γ
(

n
α − Kn

)
∫ ∞

0
w fα(w)

∫ w

0
eitz zKn+ θ

α−1(w − z)
n
α−Kn−1dzdw

=
Γ(θ + n + 1)

Γ
(
θ+n
α + 1

)
∑

r≥0

(it)r

r!

(
Kn + θ

α

)
r(

θ+n
α

)
r

∫ ∞

0
w

θ+n
α +rfα(w)dw

=
∑

r≥0

(it)r

r!

(
Kn + θ

α

)
r(

θ+n
α

)
r

Γ(θ + n + 1)

Γ
(
θ+n
α + 1

)
Γ
(
θ+n
α + r + 1

)

Γ(θ + n + 1 + rα)
=

∑

r≥0

(it)r

r!
µ(n)

r

Hence, we have established that, conditionally on Kn = j, K(n)
m /mα converges

a.s. to Un,j .

As for the second component of the aggregate output (16), namely

βL(n)
m /m1−τ , first note that by [28, Proposition 2], we have

E[L(n)
m |Kn = j] = m

θ + αj

θ + n
.

This, combined with (B.3), yields immediately (17). The law of L(n)
m is given in

Equation (22) of [28], which is easily seen to coincide with a Pólya distribution

P[L(n)
m = s|Kn = j] =

(
m

s

)
Be(m − s + n − jα, s + θ + jα)

Be(n − jα, θ + jα)
s = 0, . . . , m,

where Be(a, b) denotes a beta function. Hence, the number of innovations within
the new sectors follows a Pólya distribution. Therefore, by well–known martin-

gale convergence arguments, it follows that L(n)
m /m converges a.s. to a beta

random variable with parameters θ + jα and n − jα, ocnditionally on Kn = j.

Now, combining this limit result with the previous concerning K(n)
m the asymp-

totic statements in (i), (ii) and (iii) follow immediately.
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