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ABSTRACT

A common objective in comparative two-treatment randomized clinical trials is

the study of the possible heterogeneity of the treatment effect across subgroups

of patients, with the objective of identifying patients who benefit the most (or

the least) from a new treatment. Here we describe the connection that exists be-

tween an exploratory approach to such problem (STEPP, or the Subpopulation

Treatment Effect Pattern Plot approach) and the Lorenz curve, and in particu-

lar the generalized Lorenz curve. We exploit such connection to construct a test

for the absence of interaction between a continuous covariate and the differ-

ence in the mean of a continuous outcome between the two treatment groups.

We also review some recent developments in the study of concentration for right

censored survival data, which are also closed related to the Lorenz curve.

Keywords: Concentration, Lorenz curve, Restricted Gini index, STEPP,
Treatment-covariate interaction.

1. Introduction
Consider the general setting of comparing a new treatment against standard
therapy in a two-arm randomized clinical trial. It is often of interest to study
the heterogeneity of the treatment effect across groups of patients, to try and
identify subgroups of patients who may benefit the most (or the least) from the
new therapy, so that treatment can be tailored to the individual patient. Here
we focus on the case in which subgroups are defined with respect to a one-
dimensional covariate X – say, a biomarker or a baseline risk index.
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The presence of an interaction effect is defined as the situation in which the
effect of the new treatment on the outcome measure Y as compared to the stan-
dard treatment varies as X varies.
One may test for the presence of an interaction effect within a regression model.
For example, one could use a fractional polynomial (FP) model both overall and
within each treatment group (see Royston and Sauerbrei, 2008). In that case,
the first step is to construct a multivariable adjustment model which may con-
tain binary covariates and fractional polynomial transformations of any contin-
uous covariates. The second step involves the fractional polynomial modelling
within the adjustment model. This approach is more flexible than the standard
polynomial regression and it is useful when one wishes to preserve the continu-
ous nature of the covariate in the regression model, but suspects that some or all
of the relationships may be non linear. Potential shortcomings of the fractional
polynomial approach are its limited power to detect nonlinear interactions, and
the possible sensitivity to extreme values at either end of the distribution of X .
Owing to insufficient sample size, variables with a modest or weak effect may
not be selected or by default, linear effects may be chosen instead of more re-
alistic non linear functions.
In clinical applications, on the other hand, the patient population is often cate-
gorized into two or more disjoint groups according to the value of X based on
cut-points placed over its support, and the interaction is studied within a model
that includes main effects as well as treatment-covariate interaction terms (Alt-
man et al., 1994). Such approach suffers from its dependence on the choice of
the cut-points and from the loss of power due to categorization.
An alternative approach to the investigation of interactions, that sits between
these two extremes, was first introduced in Bonetti and Gelber (2000) within
the survival analysis setting, and it is called the Subpopulation Treatment Ef-
fect Pattern Plot (STEPP) approach. The approach is reviewed in Section 2.
It is based on dividing the observations into subpopulations defined with re-
spect to a collection of cutoff values of the covariate X , and on estimating the
treatment effect within each subpopulation. To increase the number of patients
that contribute to each point estimate (and hence the precision of the individual
estimates) subpopulations are allowed to overlap. Plots showing the estimated
treatment effects in the subpopulations can be used to investigate the possible
interaction between X and treatment. STEPP is essentially a smoothing-by-
binning approach, and it is appealing because it clearly defines the groups of
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patients on which customary treatment effect measures are calculated using
standard methods.
Different implementations of STEPP exist that depend on the nature of the out-
come of interest. For example, in survival data clinical trials interest may be in
the estimated difference between the survival probabilities at some fixed time
point t⇤ between the two treatment groups, across the subpopulations. Other
possibilities include the Cox proportional hazards model, or the cumulative in-
cidence function within the competing risks setting (Bonetti and Gelber, 2004;
Lazar et al., 2010).
Here we note the connections that exist between the STEPP construction and
ideas related to the Lorenz curve, and in particular to its generalized version
based on the regression function. Indeed, the Lorenz curve has been introduced
to measure the level of inequality in a population, typically with respect to
income or wealth. In Section 3 we recall this concept, and the notion of gener-
alized Lorenz curve (Lorenz, 1905; Kakwani, 1977). In particular, we focus on
the generalized Lorenz curve of the regression function as a tool to measure the
dependence between two variables X (real) and Y (positive). By comparing
two generalized Lorenz curves of the regression function E(Y |X = x) be-
tween two groups in a population, one can study the presence of an interaction,
i.e. whether the presence of a differential effect of the continuous predictor X
on the outcome variable Y varies between the two groups. We relate this con-
cept to the STEPP construction, show some results, and use them to construct
a test for treatment-covariate interactions. In addition, we highlight other re-
cent developments in subgroup identification in clinical studies based directly
on concentration ideas, also closely related to the Lorenz curve. We close with
some discussion in Section 4.

2. The Subpopulation Treatment Effect Pattern Plot (STEPP)
STEPP extends the idea of looking at treatment effect within subgroups of pa-
tients. In particular, the approach studies patterns of treatment effect across
overlapping subpopulations of patients. Consider n patients in a two-arm (ran-
domized) clinical trial, with a continuous baseline covariate X 2 [xmin, xmax] ⇢
<1 observed on all patients, and define K overlapping subpopulations of pa-
tients with respect to their values of X . Subpopulations (Pj , j = 1, ...,K) can
be constructed according to a sliding window pattern: assign a patient i to sub-
population Pj when xi 2 [lj , uj ], where the two nondecreasing sets of numbers
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{lj} and {uj} are such that {lj 2 [xmin, xmax], uj = inf{u � lj |Pn(lj 
X  u) � p)} for some fixed p 2 (0, 1), with Pn the empirical distribution
of X in the data. Subpopulations in the sliding window construction have an
overlapping part and a part that differs from the neighboring supopulations.The
patient with index i having covariate value xi belongs to subpopulation Pj if
lj  xi  uj .
As another possibility, the tail oriented construction produces subpopulations
by removing patients from the whole patient population, starting with the ones
with the highest (or lowest) values of X . With increasing distance from the
center, more and more patients with high covariate values (or low covariate
values) are dropped. The cutoffs are defined as {lj 2 [Xmin, Xmax], uj =

Xmax} or {lj = Xmin, uj 2 [Xmin, Xmax]}. Note that, unlike the sliding
window approach, the tail oriented construction includes among the subpopu-
lations also the subpopulation that coincides with the set of all patients in the
study.
Figure 2.1 illustrates the two constructions. The horizontal axis indicates the
various subpopulations within which treatment effects are estimated, and shows
on the vertical axis the range of covariate values used to define the cohort of pa-
tients included in each subpopulation.

Figure 2.1: Sliding window (left) and Tail Oriented (right) construction of the
subpopulations in STEPP.

For the jth subpopulation, an estimate b✓j of treatment effect is then computed.
The plot of the treatment effect estimates b✓j within the subpopulations vs. the
median value of X within each subpopulation is called a STEPP plot, and its
examination may suggest the presence of patterns in the treatment effects as the
covariate of interest varies.
The possible implementations of STEPP include the case in which treatment
effect is defined as b✓j =

bSA,j(t
⇤
) � bSB,j(t

⇤
), with bS(t)G,j the Kaplan-Meier

estimator of survival at time t within treatment group G inside subpopulation
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Pj , and with t⇤ a suitably chosen time point (Bonetti and Gelber, 2004). Fig-
ure 2.2 shows the plot of the four-year disease free survival (DFS) estimates in
two of the four arms of a breast cancer clinical trial across the sliding window
subpopulations (panel A), and the associated STEPP plot of their difference
(panel B). The covariate of interest here is a well-known predictor of breast
cancer prognosis, the tumor proliferation fraction (Ki-67), which is associated
with the degree of effectiveness of chemotherapy. The prognostic and predic-
tive value of Ki-67 LI were evaluated in the BIG 1-98 study, an international,
double-blind phase III clinical trial of 8,010 postmenopausal women with early
stage invasive breast cancer, who were randomly assigned to one of four adju-
vant endocrine therapy arms: letrozole, tamoxifen, or sequences of these agents
(letrozole to tamoxifen, tamoxifen to letrozole). We refer to Lazar et al. (2010)
for a detailed description of that STEPP analysis.

Figure 2.2: STEPP plots for 4-year disease-free survival (DFS) vs. Ki-67 la-
beling index (LI) in letrozole vs. tamoxifen. Each subpopulation contains ap-
proximately 150 patients, with approximately 50 overlapping patients. The left
panel (A) shows the estimated 4-year DFS within each subpopulation for the
two treatment groups; the right panel (B) shows the difference in the 4-year
DFS estimates, with the 95% marginal confidence intervals (Reprinted with
permission from Figure 1 in Lazar et al., 2010).

Another implementation of STEPP is based on the hazards ratio obtained from
fitting a Cox PH model (Bonetti and Gelber, 2000). This implementation presents
some difficulties in its interpretation due to the fact that the same patient typi-
cally belongs to more than one subpopulation, and that it is therefore not clear
what probability model its survival time follows. Nevertheless, the desire to
capture the difference in two survival distributions beyond the probability of
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surviving beyond up to a specific time point makes this hazards ratio imple-
mentation useful.
Other implementations include the case in which treatment effect is defined to
be the difference in a quantile of the survival function (say, the median survival
time) as described in Bonetti et al. (2009b). The survival medians in treatment
group G (2 {1, 2}) within the K subpopulations are obtained by inversion of
(

bSG,1(·), . . . , bSG,K(·)), the vector of the Kaplan-Meier estimators of the sur-
vival functions SG,j(·), j = 1, . . . ,K.
Lastly, treatment effect can be defined within the context of competing risks as
the difference in the estimated cumulative incidence function (of, say, the cause
of death of interest c) at some fixed time point t⇤ within each subpopulation:
F1(t

⇤
) = P (T  t⇤, cause = c), or as the treatment effect parameter in a Fine

and Gray semiparametric proportional hazards model for the competing risk of
interest (Fine and Gray, 1999; Lazar et al., 2010). Recently, the graphical part
of STEPP has been extended to the case of two continuous covariates (Pogue-
Geile et al., 2013).
Apart from the graphical examination of the STEPP plot, statistical tests of sig-
nificance can be performed to test for the homogeneity of the treatment effects
across the subpopulations. To test the null hypothesis of no interaction between
the covariate of interest (i.e. across subpopulations) and treatment effect one
can use one of several possible test statistics. For example, the test statistic

T = max

8

>

<

>

:

|b✓j � b✓ALL|
h

cvar(

b✓j � b✓ALL)

i1/2
, j = 1, . . . ,K

9

>

=

>

;

can be used, where b✓ALL is the measure of treatment effect computed on all
patients in the study. The distribution of T can be estimated by sampling re-
peatedly from the estimated asymptotic distribution of (b✓1, . . . , b✓K , b✓ALL), and
a p-value can thus be produced.
Lastly, a simultaneous confidence band around the plot of the estimated treat-
ment effects can be obtained by solving numerically for � the equation

P

0

@

K
\

j=1

n

✓j 2
h

b✓j ± �(1.96)[cvar(b✓j)]
1/2

io

1

A

= 1� ↵

for a sample of random variables generated from the estimated asymptotic dis-
tribution of the estimates. The parameter � represents the widening of the
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marginal confidence intervals that is necessary to produce the desired simul-
taneous coverage of the band. Note that Bonferroni adjustment can also be
used, as well as marginal confidence intervals for each subpopulation. Alter-
natively to large sample theory, in general one can also perform more accurate
testing by using permutation-based inference (Bonetti et al., 2009b).
Several examples of clinical applications of the various implementations of
STEPP can be found in Lazar et al. (2010). The R stepp package for both
the asymptotic and the permutation-based procedures is available on CRAN.

3. Lorenz-Curve, Generalized Lorenz Curve of the Regression
Function, and Concentration

3.1. The Lorenz Curve
The Lorenz curve (LC) has been used since 1905 to describe concentration and
inequality in distributions of resources. Its main importance is in economics,
when dealing with income and wealth: it is still considered as a simple method
for visualizing distributions of income or wealth with respect to their inherent
inequality or concentration, through the graph of the cumulative proportion of
total income or wealth owned, against the cumulative proportion of the popula-
tion owning it.
For a nonnegative random variable Y ⇠ f(y) with finite and strictly positive ex-
pected value µ = E(Y ), the Lorenz curve is defined as the function (F,C)(y)

given by

(F,C)(y) = (F (y), C(y)) =

✓

Z y

0
f(u)du,

1

µ

Z y

0
uf(u)du

◆

, y � 0

(Lorenz, 1905). Note that this can also be written as

LY (p) =
1

E(Y )

Z p

0
F�1
Y (z)dz, p 2 [0, 1], (3.1)

where the quantile function F�1
Y is defined as the pseudoinverse of the cumula-

tive distribution function (cdf), FY ,

F�1
Y (p) = inf{y|FY (y) � p}, 0  p  1 (3.2)

as in Pietra (1915).
Note that any distribution supported on the non-negative half line with a finite
and positive first moment admits a Lorenz curve. It is a direct consequence of
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the definition that the Lorenz curve L(p) is continuous on [0, 1], with L(0) = 0

and L(1) = 1, increasing, and convex.
The Lorenz curve is often represented through its dual. The Dual Lorenz curve
(DLC) of a non negative positive random variable Y with finite expectation µ

is the graph of

L⇤
Y (p) =

1

µ

Z 1

1�p
F�1
Y (z)dz

where p 2 [0, 1]. The dual Lorenz curve can be denoted as L⇤
Y (p) = 1 �

LY (1 � p), so it is the centrally symmetric curve to the LC, and it is therefore
a concave, increasing and continuous function on [0, 1], with L⇤

(0) = 0 and
L⇤

(1) = 1.
The empirical counterparts of these curves can be expressed in terms of order
statistics. In particular, considering n points, let y(i)n denote the i-th smallest
value of the random variable Y , with i = 1, ..., n. Then the empirical Lorenz
curve is defined as:

L

✓

k

n

◆

=

Pk
i=1 y(i)n

Pn
i=1 y(i)n

(3.3)

with k = 1, . . . , n and with L(0) = 0. (The empirical dual Lorenz curve is
defined similarly). Essentially, the Lorenz curve describes the amount of total
wealth (say) owned by the p⇥100% poorest individuals, for p 2 [0, 1] (see also
Gastwirth, 1971).

3.2. The Generalized Lorenz Curve of the Regression Function
A generalization of the Lorenz curve has been proposed in Kakwani (1977).
Let g(x) be a continuos function of x such that its first derivative exists, and
g(x) � 0 8x. If 0 < E(g(X)) < +1, then the generalized Lorenz curve
(GLC) is defined as

Lg(X)(p) =
1

E(g(X))

Z xp

0
g(t)dFX(t) =

1

E(g(X))

Z p

0
g(F�1

X (z))dz (3.4)

where p 2 [0, 1] and xp = F�1
X (p). It turns out that the GLC can be used to

study orderings of the dependence between two variables: Blitz and Brittain
(1964) introduced a monotone dependence structure based on the generalized

134 ISSN -1391-4987 IASSL



Lorenz Curves and Treatment-Covariate Interactions in Clinical Trials

Lorenz curve of the regression function g(x) = E(Y |X = x):

LE(Y |X)(p) =

1

E(E(Y |X))

Z xp

0
E(Y |X = t)dFX(t)

=

1

E(Y )

Z p

0
E(Y |X = F�1

X (z))dz, (3.5)

also with p 2 [0, 1] and xp = F�1
X (p) (Blitz and Brittain, 1964). As a con-

sequence, bivariate distributions can be ordered according to monotone depen-
dence. The symbol =̇ is used below to denote the equivalence of random vari-
ables Z1 and Z2: Z1=̇Z2 iff the probability of the event {Z1 = Z2} is equal to
one. In particular, the following properties hold:

1. LE(Y |X)(p) passes through the points (0, 0) and (1, 1).

2. LE(Y |X)(p) is increasing if and only if g(x) > 0 for all x.

3. LE(Y |X)(p) is concave if and only if g(x) is nondecreasing for all x.

4. LY (p)  LE(Y |X)(p)  L⇤
Y (p), where LY (p) is the Lorenz curve and

L⇤
Y (p) is its dual.

5. LE(Y |X)(p) = p for all p 2 (0, 1) if and only if E(Y |X)=̇E(Y ).

6. LE(Y |X)(p) = LY (p) for all p 2 (0, 1) if and only if g(x) is increasing and
such that E(Y |X)=̇Y .

7. LE(Y |X)(p) = L ⇤Y (p) for all p 2 (0, 1) if and only if g(x) is decreasing
and such that E(Y |X)=̇Y .

8. If g(x) is nondecreasing for all x then LE(Y |X)(p)  p. The inequali-
ties are reversed if g(x) is nonincreasing. In both cases, cov(X,Y )=0 and
LE(Y |X)(p) = p hold if and only if E(Y |X)=̇E(Y ).

9. LE(Y |X)(p) is invariant under FX -increasing transformation of X [a func-
tion h : R ! R is FX -increasing if for all s, t 2 R: FX(s) < FX(t) implies
h(s) < h(t)].

10. Let (X,Y ),(X 0, Y 0
) 2 ⇡(FX , FY ), where ⇡(FX , FY ) is the class of bivari-

ate nonnegative random variables (X,Y ) with continuous marginal distribu-
tion functions FX and FY . Then LE(Y |X) will be above (below) LE(Y 0|X0)

if the elasticity of E(Y |X = x) is less (greater) than the elasticity of
E(Y 0|X 0

= x).
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For the proofs of these properties we refer to Muliere and Petrone (1992).

Example 1 Consider the bivariate random variable (X,Y ) with joint probabil-
ity density function (pdf) fX,Y (x, y) = 1[0,1](x)1[x,1+x](y). Through standard
calculations one obtains the Lorenz curve as

LY (p) =

(

(2p)3/2

3 if p 2 (0, 0.5)

2p� 1 +

(2(1�p))3/2

3 if p 2 [0.5, 1)
;

the dual Lorenz curve as

DLY (p) =

(

1� (2(1�p))3/2

3 if p 2 (0, 0.5)

2p� (2p)3/2

3 if p 2 [0.5, 1)
;

and the generalized Lorenz curve of the regression function E(Y |X) = x+

1
2

as LE(Y |X)(p) =
1
2(p

2
+ p).

These functions are represented in Figure 3.1 (left panel). As noted above, the
population GLC curve is contained between the LC and the DLC.

Figure 3.1: Generalized Lorenz curve (GLC) of E(Y |X = x), Lorenz
curve (LC), and Dual Lorenz curve (DLC) of Y for Example 1 (left panel).
Generalized Lorenz curve (GLC) of the regression function, Lorenz curve
(LC), ad Dual Lorenz curve (DLC) of Y corresponding to the sample {X =

{3, 7, 2}, Y = {1, 4, 5}} (right panel).

By assuming the absolute continuity of (X,Y ), one can prove the following
equivalent expression of the generalized Lorenz curve of the regression func-
tion:

136 ISSN -1391-4987 IASSL



Lorenz Curves and Treatment-Covariate Interactions in Clinical Trials

LE(Y |X)(p) =
p

E(Y )

E(Y |X  xp) (3.6)

(see, e.g., Muliere and Petrone, 1992).

Now, let us consider the observed sample (x,y) = ((x1, y1), ..., (xn, yn)) ex-
tracted by a bivariate population described by the absolutely continuous ran-
dom vector (X,Y ). The empirical version of the generalized Lorenz curve
can be obtained by using an estimator bg(x) of the regression function g(x) =

E(Y |X = x). Or, one may choose to use bg(x) = y(x) for the observed values
(xi, yi), thus constructing the empirical GLC from (3.6) as

LE(Y |X)(p) =
p

Pn
i=1 yi
n

Pn
i=1 yi1(xi  xp)

Pn
i=1 1(xi  xp)

=

Pn
i=1 yi1(xi  xp)

Pn
i=1 yi

. (3.7)

An example of empirical LC and GLC is shown in the right panel of Figure 3.1.
The figure shows the Lorenz curve and the dual Lorenz curve corresponding to
the sample {X = {3, 7, 2}, Y = {1, 4, 5}}, as well as the estimated generalized
Lorenz curve of E(Y |X = x).

3.3. Asymptotic Behavior of the Empirical GLC of the Regression Func-
tion, and a Test for Interaction

The following result describes the asymptotic behavior of the (scaled) empirical
GLC of the regression function as constructed in (3.7) above.

Theorem 3.1. Let (X,Y ) be an absolutely continuous random vector with sup-

port (R+
)

2
, and with finite first and second marginal moments. Let F (x, y)

and

bF (x, y) be the joint cdf and the joint empirical cdf from an i.i.d. sample

extracted from F , respectively. For p 2 [0, 1] define the map �(F (x, y), p) and

its empirical counterpart �( bF (x, y), p) as:

�(F (x, y), p) = pE(Y |X  F�1
X (p)) =

Z

(<+)2
y 1(x  F�1

X (p)))dF (x, y)

=

Z

(<+)2
y 1(x  F�1

X (p)))dF (x, y)
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and

�( bF (x, y), p) = p bE(Y |X  bF�1
X (p)) =

Z

(<+)2
y 1(x  bF�1

X (p))d bF (x, y)

=

1

n

n
X

i=1

Yi 1(Xi  bF�1
X (p)),

where

bF (x, y) is the ecdf of (X,Y ) and

bF�1
X is the empirical quantile function

of X .

Then,

p
n(�( bF (x, y), p)� �(F (x, y), p)) is asymptotically equivalent to

Z

(<+)2
v 1(u  F�1

X (p))d(GF (u,v)), (3.8)

where GF (u,v) is a zero mean Gaussian process with known covariance func-

tion.

We refer to Appendix A for a sketch of the proof of Theorem 3.1. While this
result describes the large sample behavior of bE(Y |X  bF�1

X (p)), the fact that
its expression involves an integration with respect to a process makes it hard to
use in practice. Indeed, we recommend the use of permutation-based inference
instead.
Note that above we have defined the empirical generalized Lorenz curve of the
regression function as:

LE(Y |X)(p) =

Pn
i=1 yi1(xi  xp)

Pn
i=1 yi

.

The GLC of the regression function is therefore related to an increasing se-
quence of subpopulations defined by the values xp = F�1

X (p) of the predictor
X , across all values of p 2 [0, 1]. In particular, for a fixed value p the GLC of
the regression function is the ratio between the conditional expected value of
Y given that X  F�1

X (p) and the overall expected value of Y . This clearly
resembles the tail oriented version of STEPP described in Section 2 when one
defines as treatment effect the (estimated) differences in conditional means of
exactly the form E(Y |X  F�1

X (p)). For the subpopulations containing all
patients that have values of X smaller than the empirical percentiles xp, these
are therefore estimated nonparametrically.
This parallel suggests alternative tests for interaction, motivated by the com-
parison of the level of dependence between X and the outcome Y in the two
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treatment groups, when such dependence is expressed by the GLC of the regres-
sion function. In particular, one may study the presence of an interaction effect
through the difference between the estimated GLC of the regression function
for the two treatment groups

⇣

bL
(1)
E(Y |X)(p) and bL

(2)
E(Y |X)(p)

⌘

across all values
of p 2 [0, 1]. For example, one may consider the following two test statistics:

T1 =

Z 1

0

�

�

�

bL
(1)
E(Y |X)(p)� bL

(2)
E(Y |X)(p)

�

�

�

dp

and

T2 =

Z 1

0

⇣

bL
(1)
E(Y |X)(p)� bL

(2)
E(Y |X)(p)

⌘2
dp.

Inference for the proposed test statistics could be based on Theorem 3.1. How-
ever, as noted above, it is more practical to make use of permutation testing.
Permutation tests are conditional statistical procedures, where the conditioning
is with respect to the permutation set of the observed data which plays the role
of reference set for the inference. Under the null hypothesis and assuming ex-
changeability, the conditional probability distribution of a generic element that
belongs to the set of the permutations of the observed data is independent of
the distribution P of the data. This allows permutation inference to be invariant
with respect to P within H0. Due to this invariance property, permutation tests
are therefore distribution free and non parametric. To perform a permutation
test one follows the customary four steps: (i) define the null hypothesis, the al-
ternative hypothesis, and the assumptions; (ii) choose the appropriate test statis-
tic and calculate its value using the observed data; (iii) calculate the value of the
test statistic for all permutations of the data; and (iv) reject or not reject the null
hypothesis using the estimated distribution of the test statistic under permuta-
tion. When the number of all permutations is very large one typically uses the
conditional Monte Carlo approach that chooses a sample of permutations, thus
producing an estimate of the exact p-value (Good, 1994). In our problem one
may develop a permutation test under the null hypothesis that FX,Y is equal in
the two treatment-defined populations by permuting the pairs of values (XiYi)

across the two patient groups.

3.4. Concentration
An alternative way of studying the differential effect of a new treatment on
a subgroup of patients exists that is based directly on the Lorenz curve con-
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structed on the two treatment groups. Disregarding covariates, let us go back
to the Lorenz curve of a positive random variable Y . The area between the 45

degree line and the Lorenz curve is a measure of the concentration of the dis-
tribution of Y .
Let the random variable of interest be Y � 0 with cdf FY , survival function
SY (y) = 1� FY (y), density function fY (y), finite expected value µ > 0, and
variance V ar(Y ). The coefficient of mean difference is defined as

� =

Z

(<+)2
|y1 � y2| dFY (y1)dFY (y2).

The Gini coefficient of concentration for FY is G = �/(2µ), and it can be es-
timated from an i.i.d. sample Y1, . . . , Yn drawn from the population by bGH =

D/(2Y n), with D = (n(n � 1))

�1P

j 6=k |Yj � Yk| and Y n the sample mean
(Gini, 1912). Asymptotic normality of the empirical Gini index is well known
(Hoeffding, 1948). Importantly, the Gini index G is equal to twice the concen-
tration area, or the area between the 45 degree line and the Lorenz curve. Thus
G is consistent with orderings of distributions that are induced by the Lorenz
curves. It is therefore reasonable to compare distribution with respect to their
concentration.
In particular, testing for the equality of two population Gini indices may capture
differences in the two distributions that may not be revealed by other measures.
Rejection of the null hypothesis of equality of the two outcome distributions
of the two patient groups from the point of view of their concentration may
suggest that subgroups of patients exist for whom treatment has a strong posi-

tive (or detrimental) effect. Equivalently, differences in concentration between
groups may suggest the presence of a differential treatment effect on some pa-
tient groups.
Following these ideas, the use of the Gini index has recently been extended to
right-censored survival data arising from clinical studies to detect differences in
concentration between the survival time distributions of two treatment groups
of patients (Bonetti et al., 2009a). An alternative expression for G is

G = 1�
R

<+ S2
Y (u)du

R

<+ SY (u)du
.
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One may consider the following restricted version of G:

Gt = 1�
R t
0 S

2
Y (u)du

R t
0 SY (u)du

,

and estimate it by replacing SY by its Kaplan-Meier estimator bSY . Under
some regularity conditions, the restricted Gini statistic has an asymptotic nor-
mal asymptotic distribution, and a plug-in estimator of its asymptotic variance
is available (Bonetti et al., 2009a). A test is then constructed that compares
the estimated (restricted) Gini concentration coefficient between the two treat-
ment groups. The Gini test complements other tests in the sense that it captures
differences in survival distributions not typically detected by other tests (e.g.
Wilcoxon, Log-rank, or Gray-Tsiatis), and a large simulation study suggests
that the Gini index should be considered together with other existing tests to
detect differences in survival distributions. Here, too, permutation distribu-
tion inference is recommended, but only for the case of small and unbalanced
groups (Gigliarano and Bonetti, 2013). Additional results in that reference ap-
ply specifically to cure rate models. An R function for the implementation of
the restricted Gini test for right censored survival data is available from the Au-
thors.

4. Conclusions
As we have seen above, STEPP is an exploratory tool which is easy to inter-
pret, and it provides an opportunity to detect interactions beyond those that
may be apparent based on regression models. STEPP may suggest the presence
of a pattern in treatment effects, and it falls somewhere between the simple
subgroup analyses performed on disjoint patient subgroups and full modeling.
When implementing the methods, it is important to assess the robustness of the
results of the analysis to the choice of the parameters that define the subpopu-
lations.
As we have discussed here, interesting connections exist between STEPP and
Lorenz curves. In particular, starting from the definition of the generalized
Lorenz curve of the regression function, we have suggested another way to ex-
plore the presence of the interaction effect between treatment and a continuous
predictor X . Using test statistics based on the difference of two generalized
Lorenz curve of the regression function, one may construct increasing overlap-
ping subpopulations of patients (as in the tail-oriented version of STEPP) and
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compare subpopulation-specific conditional means of the outcome Y .
A connection also exists between the GLC of the regression function and the
problem of identifying the optimal cutoff to dichotomize a population into two
groups with respect to the (continuous) covariate X . Such problem can be de-
scribed as the problem of finding the value p 2 (0, 1), if it exists, such that it
maximizes the absolute value of some distance �(p) between the two condi-
tional distributions of Y |X  xp and Y |X > xp, where we again indicate with
xp the percentile F�1

X (p). A particular case is that in which such distance be-
tween the two conditional distributions is defined to be the difference between
the two conditional expectations, i.e.

p⇤ = argmaxp2(0,1)|�(p)| = argmaxp2(0,1) |E(Y |X > xp)� E(Y |X  xp)|

(see also the related maximally selected chi square approach in Miller and Sieg-
mund, 1982). The problem of finding p⇤ can equivalently be expressed in terms
of the GLC of the regression function. In particular, it is easy to show that
�(p) = 1�p

p E(Y )

⇥

p� LE(Y |X)(p)
⇤

.
Here we have seen that the Lorenz curve can also be exploited directly to detect
a differential treatment effect in different subgroups of the patient population
by studying differences in concentration, both in the uncensored case and in
the right censored case. Whatever the approach that one chooses to explor-
ing heterogeneities in treatment effects, positive results should be confirmed by
analysing results from other datasets investigating similar treatment compar-
isons. These (and other) approaches may also help provide further justification
to subsequent subgroup analyses in a study, i.e. for the study of treatment effect
within subgroups of patients. Such practice is still quite controversial but we
believe that it is an ethical necessity, especially when studying survival in life
threatening diseases.

Appendix A - Outline of Proof of Theorem 1
The asymptotic study of the empirical generalized Lorenz curve of the re-
gression function (with bE(Y |X = x) = y(x)) is based on the concepts of
Hadamard differentiability, the functional delta method, and the central limit
theorem for empirical measures (see, e.g., van der Vaart, 1998).
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Let hn(x, p) = [1(x  bF�1
X (p))� 1(x  F�1

X (p))], and write
Z

(<+)2
hn(x, p) y d bFX,Y (x, y) =

=

Z

(<+)2
hn(x, p) y dFX,Y (x, y) +

+

Z

(<+)2
hn(x, p) y d

h

bFX,Y (x, y)� FX,Y (x, y)
i

= An(p) +Bn(p).

Application of the dominated convergence theorem yields An(p)
p! 0 uni-

formly in p, as does the term Bn(p) since |Bn(p)|  | bE(Y )�E(Y )|. Now, con-
sider the map � : (F (x, y), p) 7!

R

1(u  xp)vdF (u, v), where xp = F�1
X (p).

The map � is Hadamard differentiable at F (x, y) if there is a continuos linear
map, the Hadamard derivative, �0F (x,y) such that:

�0
F (x,y)(h) = lim

t!0

1

t
[� (F (x, y) + tht, p)� �(F (x, y), p)] ,

where the sequence ht ! h uniformly in D[0, 1], h is continuous, and F (x, y)+

tht is contained in D[0, 1] for all t. One can find

�0
F (x,y)(h) = lim

t!0

1

t

"

Z

(<+)2
y 1(x  xp)d(F (x, y) + tht)�

�
Z

(<+)2
y 1(x  xp)dF (x, y)

#

=

Z

(<+)2
y 1(x  xp)dh.

The class of lower rectangles is P -Donsker for any law of (X1, Y1), ..., (Xn, Yn),
and the indicator function is square integrable (van der Vaart and Wellner, 1996;
Das Gupta, 2008). By the central limit theorem for empirical measures, the se-
quence

p
n( bF (x, y) � F (x, y)), converges weakly to is a zero-mean Gaussian

process GF (x,y) with covariance function given by Cov(GF (xi,yi),GF (xj ,yj)) =

F ((xi ^ xj), (yi ^ yj)) � F (xi, yi)F (xj , yj), where ^ denotes the minimum
and i, j = 1, .., n (van der Vaart and Wellner, 1996). Lastly, by the functional
delta method, one concludes that

p
n(�( bF (x, y), p)� �F ((x, y), p) is asymp-

totically equivalent to
R

y 1(x  xp)d(GF (x,y)).
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