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1. Introduction: background and motivation

Gaussianity of asset returns has played a central role in pricing theory of finan-
cial derivatives: normality of underlying distribution has also been augmented
with the assumption of continuity of trajectories when Samuelson introduced in
1965 the geometric Brownian motion [58], subsequently used in the first papers
by Black, Scholes and Merton.

The common roots of these works date back in 1900 with the thesis of Bache-
lier [6], while the physical phenomenon of Brownian motion, usually attributed
to Brown [17], was explained by Einstein in [27], also establishing a milestone
in the atomistic world view of physics. Bachelier’s work is generally considered
as both the birth of time-continuous stochastic processes in probability on one
hand (Feller in [31] renames Brownian motion as the “Wiener-Bachelier pro-
cess”), and of the strategies in continuous time to hedge risk in finance on the
other. In terms of mathematics, this thesis will deeply influence the researches
of Kolmogorov in the 1920’s and Itô in the 1950’s, until it was rediscovered by
Black, Scholes and Merton in 1973 [13]. Modeling asset return prices by means
of Black and Scholes model has been a standard procedure in mathematical
finance since then.

But, as documented in a large number of papers written by both academics
and practitioners, both hypotheses of normality and continuity are contradicted
by the data in several pieces of evidence.

There are in fact several points in literature in which this drawback can be
spotted; to give a general example, return distributions are more leptokurtic
than the Gaussian, as noted by Fama as early as 1963 [30]; this feature is more
accentuated when the holding period becomes shorter, and clearly appears in
high frequency data. Option prices also exhibit the so called “volatility smile”
(see for instance the work of Björk [12] for details) and prices higher than
predicted by the Black and Scholes formula for short-dated options. At the
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same time, under the hypothesis of inability to trade continuously, jumps may
be clearly identified also in equity data.

It has to be noticed that this particular hypothesis of uncontinuous trading
times is becoming less and less incumbent in present times with the introduction
of trading techniques as high-frequency and hyper-frequency trading. Nonethe-
less, it was a crucial standing point from which financial models based on Lévy
processes were introduced.

A complete qualitative description of empirical properties of asset returns
can be found for instance in the work by Cont [22].

The introduction and developement of Lévy processes in applications, there-
fore, finds its reason in the desire to solve problems that Brownian motion based
processes weren’t able to fit, trying to avoid the basic structural problem de-
scribed above.

According to this framework, models assuming discontinuities and denying
Gaussianity were conceived for mathematical finance.

The presentation of hyperbolic distributions is given by Barndorff-Nielsen in
[8], as models for the size of sand grains following an heuristic conjecture by Bag-
nold, that will be published later in 1980 [7]; soon these distributions entered the
field of finance as a starting point for constructing suitable Lévy processes (see
for instance also Eberlein and Keller, [26], Eberlein, [25] and related references).

Following this intuition, Meixner process was embedded in financial context
by Grigelionis in 1999, [36].

His definition was basically given in “classical” terms of characteristic func-
tion and infinite divisibility of the corresponding distribution of the increments.
Schoutens proposed a financial application of Meixner process in his technical
report of 2002 [62].

Despite their utility, Lévy processes in finance raise other structural problems,
some of which still cannot be solved, in particular for specific families of Lévy
processes among which Meixner process.

One of the main issues originates from the incompleteness of the markets
which they are associated to; it means that there exist an infinite number of
martingale measures equivalent to the physical measure describing the under-
lying price evolution. The problem is that each of them corresponds to a set
of derivatives prices which are compatible with the no arbitrage requirement;
thus derivative prices are not determined by no arbitrage, but depend on in-
vestors’preferences and so the reference to a particular utility function, different
from an investor to another, will be needed.

It has been shown by Bellini and Frittelli in [10] that, in general, maximizing
utility functions is equivalent to minimizing some kind of distance to the given
physical probability measure; in the case of an exponential utility for instance,
the dual problem is the minimization of the relative entropy.

A large amount of literature is dedicated to this kind of problems, from the
works of Miyahara [52–54], and Fujiwara and Miyahara [34], to the works by
Föllmer and Schweizer [32] and Schweizer [65], Hubalek and Sgarra, [39], and
the important paper by Kallsen and Shiryaev [42].
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All these papers deal with the general problem but never involve Meixner
process as an example.

A possible and popular choice for an equivalent martingale measure in the
context of exponential Lévy processes is given by the Esscher transform martin-
gale measure, which was given a first formulation in 1932 by actuarial Esscher
in [29] and proposed again by Gerber and Shi u in 1994, [35].

Esscher transform, as in the definition in Gerber and Shiu [35], is an useful
technique for valuing derivative securities if the logarithms of the prices of the
primitive securities are governed by particular stochastic processes with station-
ary and independent increments. Its mathematical formulation relies on the so
called Esscher principle.

Esscher principle is a premium principle, i.e. one of the possible rules for
assigning a premium to an insurance risk. It is based on the expectation of the
loss under an exponentially transformed distribution properly normalized.

In the already cited paper by Kallsen and Shiryaev, [42], the Esscher mar-
tingale measure for exponential processes and the Esscher martingale transform
for linear processes (i.e. the representation of the process in terms of stochastic
integrals) are introduced to distinguish between two possible kinds of Esscher
transforms.

Also, in Grigelionis, [36] the proof of the existence and the explicit evalua-
tion of the parameter which identifies the unique Esscher equivalent martingale
measure for Meixner process can be found: this result allows to extend and
generalize the usual Black-Scholes formula for a Lévy process different from
Brownian motion.

The described approach to the definition of Lévy processes in finance, and in
particular of Meixner process, can be classified as a “classical – statistical” one,
and as we have described, finds its motivation in the attempt of providing an
improvement to the lack of fit of Brownian motion based models.

Literature about Meixner process nonetheless is quite sparse and a more
“mathematical” formulation of this model can be found. Its theoretical intro-
duction in this sense dates back to 1998 with a paper by Schoutens and Teugels
[64] dealing with orthogonal polynomials and martingales.

In fact the main core of the mathematical theory leading to the generation of
Meixner process can be extracted, under suitable conditions on the coefficients,
from the solutions of a particular kind of second order differential equation,
namely an equation of hypergeometric type. According to the degree and the
positivity of the discriminant of the coefficient of the second order term in the
starting equation, different families of orthogonal polynomials can be generated.
They can be either of continuous variable or discrete variable according to the
type (differential or difference) of the generating hypergeometric equation. All
these polynomial families fit in a theoretical scheme named the Askey scheme of
hypergeometric orthogonal polynomials (see for instance Koekoek and Swart-
touw [43] for detailed reference and Lebedev, [44] for classical definitions): it
is divided in layers linked by limit transition relations between the different
families according to the generalized hypergeometric series which defines the
polynomials contained in each family.
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For instance, the lowest level is identified by generalized hypergeometric se-
ries 2F0(0) (see Schoutens, [61] and also Andrews, Askey and Roy [1] for exact
definitions) and contains the Hermite polynomials; climbing one level upwards
one finds the 1F1(1) and the 2F0(1) series, defining Laguerre and Charlier poly-
nomials, and so on.

The first three lower layers of Askey scheme contains exclusively polynomial
families that enter the group of the so called classical orthogonal polynomials,
except for the Meixner-Pollaczeck family, belonging to level 2F1(2) and gener-
ating, as we are going to see, the Meixner process.

So another, more theoretical incentive towards the analysis of this process
was the attempt to characterize the behavior of the Lévy processes deriving
from this particular family of orthogonal polynomials. The same approach was
undertaken late in literature, as it is appears from the lack of results regarding
Meixner process, mostly in terms of financial theoretical properties and simula-
tion strategies.

Many other mathematical properties have been inspected by Pitman and Yor
in [56] for Lévy processes involving hyperbolic functions in their characteristic
function (with the Meixner as a particular case); the motivation is that these
distributions appear in several problems, especially hitting time problems, dis-
tributions of standard Brownian excursions and problems related to random
walks and random trees. Often these distributions appear also in analytic num-
ber theory.

Always in Pitman and Yor [56], moreover, a hint is made to the problem of
expressing these processes in terms of a subordinated Brownian motion, which
is solved later by Madan and Yor in [48] by means of suitable subordinators.

Subordinators provide a clear and often practical way to introduce Lévy
processes via a Brownian motion with stochastically changed time parameter.

Moreover, because theory of subordinators often allows a useful pattern to
obtain simulations of trajectories of Lévy processes, this result is the main reason
why we have attempted to simulate trajectories of Meixner process.

At the end of this paper we present simulations of trajectories of a Meixner
process (which, by our knowledge, cannot be found anywhere in literature.)
obtained via an original R routine based on the theoretical result contained in
Madan and Yor [48].

Generally speaking, the more abstract approach to Meixner process makes
possible a connection with other fields of the topic as orthogonal polynomials,
Stein’s method and martingale theory.

A large amount of literature has been produced in terms of mathematical
properties of Meixner process. For instance, an analogous of the Brownian mo-
tion typical chaotic representation property for a general Lévy process including
the Meixner, is shown in a paper by Lytvynov [47], or a possible extension of
this process is constructed into a new process called Meixner-type process gen-
erated by having the parameters of the characteristic exponent of a standard
Meixner process state space dependent by means of suitable pseudo-differential
operators, as can be seen in a work by Böttcher and Jacob [14], or again the
general analysis of a wide class of Lévy processes (among which the Meixner)
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by means of their semigroup and theory of integral equations, as in the work of
Lev [45].

Moreover an interesting paper by Manstavičius, [49], on topological proper-
ties of graphs of Lévy processes, in particular Hausdorff-Besicovitch dimension,
assesses this particular quantity to be equal to 1 for every generalized z process
and consequently for Meixner process. The result is obtained via the calculation
of the Blumenthal - Getoor index β and relating it to Pruitt index, which is in
turn almost surely strictly related to Hausdorff-Besicovitch dimension.

The inadequacy of Brownian motion as a backbone of models trying to cap-
ture returns of financial assets as opposed to Meixner process, can be shown by
easy examples (see for instance Schoutens [62]).

The next part (section 2) of this work recalls the two most famous represen-
tations of the characteristic function of an infinitely divisible distribution (see
for instance Sato[60] and Bertoin [11] for further details), as reference will be
made to them in the following; sections 3 and 4 introduce the basics of Meixner
distributions, along with some general estimation techniques for distribution
parameters, namely ML estimation and method of moments. Subsection 4.1 of
section 4 is devoted to the introduction of the problem of finding a suitable
equivalent martingale measure, namely Esscher transform martingale measure.

Section 5 introduces, as announced, a different approach to Lévy processes,
and in particular Meixner process, based on orthogonal polynomials, as firstly
introduced in the work by Schoutens [61], together with an explicit formula
for evaluating Fisher information for Meixner-Pollaczeck polynomials as in Do-
minici, [24].

Section 6 summarizes the work by Madan and Yor, and describes the theoreti-
cal tools to write Meixner process as a suitably subordinated Brownian motion;
these results lead to the generation of the simulated trajectories of Meixner
process, which are shown at the end of the same section.

The last section 7 collects some possibilities of further research based both
on theoretical and applicative issues; the most promising seem to be the inves-
tigation of a small deviation problem for Meixner process, and, in the field of
applications, the possibility of fitting data coming from seismology, namely the
so called “background noise”, by means of Meixner processes.

2. Representations of characteristic functions of infinitely divisible

distributions

It is useful at this point to briefly introduce some terminology which will be
employed in the following and that has already been cited in the opening section.
As references for this section see for instance the works of Sato [60], Bertoin [11],
Schoutens [63] and Appelbaum [4].

It is well known that Lévy processes are based on the definition of infinitely
divisible (ID) distributions, and according to the way the problem of character-
izing such distributions was tackled in the 1930’s, two representation formulas
due to Khinchine and Kolmogorov were defined for the characteristic function
φ(θ) of an ID distribution.
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Definition 1. A distribution of a random variable which for any positive integer
n can be represented as a sum of n identically distributed independent random
variables is called an infinitely divisible distribution.

Theorem 1 (Lévy-Khinchine canonical representation). The function φ(θ) is
the characteristic function of an infinitely divisible distribution if and only if
there exist constants a ∈ R, σ2 ≥ 0 and a measure ν on R! {0} respecting the

condition
∫ +∞
−∞ min{1, x2}ν(dx) < ∞ such that

φ(θ) = exp{ψ(θ)}, (2.1)

with

ψ(θ) = iaθ −
σ2

2
θ2 +

∫ +∞

−∞
(eiθx − 1− iθx1I{|x|<1})ν(dx) (2.2)

for every θ.

The measure ν is the so called Lévy measure whilst the triplet (a,σ, ν(dx))
is the Lévy triplet. The function ψ(θ) is the characteristic exponent. Constant
reference to (2.2) and to the notation introduced in this section will be made,
as they represent a typical way to identify and characterize Lévy processes.

In case of an infinite divisible distribution with finite second moment, the
following representation formula follows:

Remark 1 (Kolmogorov canonical representation). The function φ(θ) is the
characteristic function of an infinitely divisible distribution with finite second
moment if and only if it can be written as

φ(θ) = exp{ψ(θ)}, (2.3)

with

ψ(θ) = iγθ +

∫ +∞

−∞

(

eiθu − 1− iθu
) dK(u)

u2
, (2.4)

where γ is a real constant, and K(x) is a non decreasing and bounded function
such that K(−∞) = 0. The integrand is defined such that for u = 0 it is equal
to −θ2/2.

Let us now give the theoretical background of the illustrated example, firstly
discussing the approach to Meixner process in standard closed form.

3. From generalized z distribution to Meixner distribution

In this section, Meixner distribution will be evaluated in a classical fashion, as
a particular case of a more general z distribution. In a paper by Prentice, [57],
a class of distributions (z distributions) having the following density

fZ(x) =
2π exp

{ 2πβ1

α (x− µ)
}

αB(β1,β2)
(

1 + exp
{

2π
α (x− µ)

})β1+β2
,
x ∈ R, µ ∈ R,
α > 0, β1 > 0, β2 > 0

and B(β1,β2) is the Euler beta function, is introduced.
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These distributions were originally introduced in order to simplify the pro-
cedure of choice between parametric models: it was in fact observed that for
particular values of the parameters, this family contains the exponential, log-
normal, Weibull, gamma, generalized gamma, log logistic, χ2, t and F distri-
butions; hence, discrimination among many usual parametric models is reduced
to the choice of a suitable parameter set for the general family. Moreover the
comprehensive model shows sufficient robustness to make maximum likelihood
results able to be used both for pairwise discrimination and for assessment of
the specific models within the more general one.

It is easy to check that the characteristic function of such a density is

φZ(u) =
B(β1 +

iαu
2π ,β2 − iαu

2π )

B(β1,β2)
exp (iµu) , u ∈ R.

With a slight generalization of the preceding case, a probability distribution
on R is called a generalized z distribution (GZD(α,β1,β2, δ, µ)), see [37], if

φGZ(u) =

(

B(β1 + iαu
2π ,β2 − iαu

2π )

B(β1,β2)

)2δ

· exp (iµu) , u ∈ R, δ > 0.

With reference to the above terminology, it can be easily shown that
GZD(α,β1,β2, δ, µ) is infinitely divisible with Lévy triplet (a, 0, ν(dx)), where

a =
αδ

π

∫ 2π/α

0

e−β2s − e−β1s

1− e−s
ds+ µ,

ν(dx) = v(x)dx,

with

v(x) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

2δ exp
{

− 2πβ2

α x
}

x
(

1− exp
{

− 2π
α x
}) , if x > 0,

2δ exp
{

− 2πβ1

α x
}

|x|
(

1− exp
{

2π
α x
}) , if x < 0,

(3.1)

These generalized distributions are completely characterized: in fact let now
{κn}n≥1 be the sequence of the cumulants of GZD(α,β1,β2, δ, µ), i.e. the se-
quence of the coefficients of Taylor’s expansion of function defined as gGZ(u) =

logφGZ(u); let also γ1 = κ3/κ
3/2
2 be the skewness, and γ2 = κ4/κ22 the kurtosis;

moreover define

νn(β1,β2) =

∫ ∞

0
sn−1 e

−β2s + (−1)ne−β1s

1− e−s
ds, n ≥ 1

then the following formulae hold

κ1 =
αδ

π
ν1(β1,β2) + µ, κn =

2αnδ

(2π)n
νn(β1,β2), n ≥ 2; (3.2)

γ1 =
ν3(β1,β2)

(2δν32 (β1,β2))
1/2

, γ2 =
ν4(β1,β2)

2δν22(β1,β2)
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It can be easily noticed how the results in (3.2) can be considered as a general
case for the sequence of the cumulants of Prentice’s original distribution, which
occurs for δ = 1/2.

A particular case of GZD distribution takes place when

β1 =
1

2
+

β

2π
,

β2 =
1

2
−

β

2π
,

giving place to Meixner distribution MD(α,β, δ, µ), which we will see in the
following.

Definition 2. For all α > 0,−π < β < π, δ > 0, and µ ∈ R

MD(α,β, δ, µ) = GZD

(

α,
1

2
+

β

2π
,
1

2
−

β

2π
, δ, µ

)

.

3.1. Meixner distribution

The density of a random variable X enjoying a Meixner distribution MD(α,β,
δ, µ) is given by

fM (x;α,β, δ, µ) =
(2 cos(β/2))2δ

2απΓ(2δ)
exp

{

β(x− µ)

α

}

∣

∣

∣

∣

∣

Γ

(

δ +
i(x− µ)

α

)

∣

∣

∣

∣

∣

2

, (3.3)

with α > 0, β ∈ (−π,π), δ > 0, µ ∈ R and Γ(·) the Euler Gamma function.
µ is a simple location parameter, while α and δ have influence on the peaked-

ness of the distribution; β is a shape parameter influencing primarily the skew-
ness of the distribution.

It is easy to see via a simple standardization, that if X ∼ MD(α,β, δ, µ),
then the variable Z = (X − µ)/α enjoys a MD(1,β, δ, 0).

The characteristic function of X is

φMD(u) = E
[

eiuX
]

=

(

cos (β/2)

cosh αu−iβ
2

)2δ

· exp (iµu) , (3.4)

and the cumulant function of X is

gMD(u) := logφMD(u) = 2δ

[

log (cos(β/2))− log

(

cosh
αu− iβ

2

)]

+ iµ (3.5)

Let us now discuss the main properties of Meixner distributions:

Property 1. MD(α,β, δ, µ) is infinitely divisible with Lévy triplet (a, 0, ν(dx))
with:

a = αδ tan
β

2
− 2δ

∫ +∞

1

sinh(βx/α)

sinh(πx/α)
dx+ µ,

ν(dx) = δ
exp(βx/α)

x sinh(πx/α)
dx (3.6)
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Proof. see Schoutens [63], pgg. 44–45.

This allows the construction in classical terms of the Meixner process. A
consequence of infinite divisibility is that

φMD(u;α,β, δ, µ) = [φMD(u;α,β, δ/n, µ/n)]n,

for every n ∈ N. From this immediately follows that

Property 2. If Xj ∼ MD(α,β, δj , µj), j = 1, . . . , n and they are mutually
independent, then

X1 + · · ·+Xn ∼ MD

⎛

⎝α,β,
n
∑

j=1

δj ,
n
∑

j=1

µj

⎞

⎠ .

From the form of the Lévy measure in (3.6) holds the following

Property 3. MD(α,β, δ, µ) is self decomposable and has semiheavy tails (refer
for instance to [60] for the definition of self decomposability and semiheavy
tails).

Proof. see Grigelionis [36].

Property 3 can be also shown in general for GZD by means of theorem 5.11.2
in Lukacs [46] observing the form of the Lévy measure in (3.1).

The introduced properties reflect in the corresponding features that we are
going to enumerate in section 4 for Meixner process.

Following the same idea given for the generalized z distributions, it is easy
to obtain the forms of the first moments of an MD(α,β, δ, µ);with the same
notation, in fact, it holds that

κ1 = αδ tan

(

β

2

)

+ µ, κ2 =
α2δ

1 + cosβ
,

γ1 = sin

(

β

2

)

√

2

δ
, γ2 = 3 +

2− cosβ

δ
.

3.2. Estimation for the Meixner distribution

Literature on Meixner process usually adopts method of moments as the main
parameter estimation method, clearly due to the relative simplicity of compu-
tations involved. With slightly more complex calculations, relying on standard
likelihood theory, maximum likelihood estimation is also possible for the param-
eters in this case.

More complex estimation methods either in terms of the whole process or
in terms of nonparametric adaptive estimation of the Lévy measure for pure
jump Lévy processes (although not directly referring to Meixner processes) are
provided for instance in works by Woerner, [66] and Genon-Catalot, [20, 21].
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3.2.1. Method of moments estimation

Suppose x1, . . . , xn is a random sample drawn from X ∼ MD(α,β, δ, µ); it is
relatively simple to estimate the moments of a Meixner distribution by method
of moments. Let x̄ and s2 denote as usual the sample mean and uncorrected
variance respectively; moreover, defining µ̄k = n−1

∑n
i=1(xi−x̄)k, for k = 2, 3, 4,

let the sample skewness and kurtosis be γ̄1 = µ̄3/µ̄
3/2
2 , and γ̄2 = µ̄4/µ̄2

2. Then
the usual method of moments procedure leads to these relations

δ̄ =
1

γ̄2 − γ̄1 − 3
, β̄ =

sgn(γ̄1)

cos(2 − δ̄(γ̄2 − 3))
,

ᾱ = s

√

cos β̄ + 1

ᾱ
, µ̄ = x̄− ᾱδ̄ tan

(

β̄

2

)

.

Observe that moment estimates do not exist when γ̄2 < 2γ̄21 + 3.

3.2.2. Maximum Likelihood estimation

Let x1, . . . , xn be a random sample as above; the loglikelihood function is given
by the expression

ln(α,β, δ, µ) = δ log(2 cos(β/2))−log(2απ)−log(Γ(2δ))+βz̄+
1

n

n
∑

i=1

log|Γ(δ+izi)|2,

where

zi =
xi − µ

α
, z̄ =

∑n
i=1 zi
n

.

The MLE θ̂ML for the vector of parameters θ = (α,β, δ, µ) is obtained by usual
maximization of

θ̂ML = argmax
θ∈Θ

ln(θ)

with Θ the parameter space for θ. For Meixner distribution it is possible to com-
pute the ML estimate În(θ̂ML) of the information matrix, since the expressions
defining the first two derivatives of loglikelihood functions are explicitly available
(for instance see [38], Appendix A), and these expressions can be used to maxi-
mize very efficiently the loglikelihood function via Newton-type algorithm based
on moments estimates as starting points. Let us now define Meixner process in
a standard classical way.

4. Definition of Meixner process

In this section, Meixner process is constructed starting from the definition of
Meixner distribution (definition 2) and from its infinite divisibility (property 1).
In fact given infinite divisibility of MD(α,β, δ, µ), a Lévy process can be associ-
ated with it as it can be easily seen for instance in Appelbaum [4], Bertoin [11]
and Sato [60], which is called the Meixner process.
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More precisely, a Meixner process X = (Xt, t ≥ 0) is a Lévy process such
that

Xt ∼ MD(α,β, δt, µ). (4.1)

A standard notation which will be adopted sometimes from now on is X =
MP (α,β, δ, µ).

Standard definition of Meixner process easily allows to collect some basic
properties of the process; in fact, summarizing the features of the process, mostly
deriving from the corresponding properties of Meixner distribution, we have that
this particular Lévy process

• has no Brownian component in fact by property 1, the null value of the
middle element of the Lévy triplet is clearly observable;

• its Lévy measure ν(dx) is characterized by equation (3.6);
• has moments of all orders, as a consequence of the corresponding feature
of the generalized z distribution;

• is of infinite variation, in fact it can be verified that

∫ +1

−1
|x|ν(dx) = ∞

with ν(dx) as in (3.6) the Lévy measure associated to Meixner process;
• has semiheavy tails and is self decomposable, as shown with property 3.

In the following, one possible way to tackle the problem of the existence of an
infinite number of equivalent martingale measures for Lévy processes (and in
particular for Meixner process) is introduced.

4.1. Esscher transform martingale measure for geometric Meixner
process

Esscher transform, as introduced at the beginning of this paper, was developed
as one of several candidates for asset pricing in situations of incomplete markets
by Gerber and Shiu in [35], referring to an exponential transform originally
introduced by Esscher in [29] to approximate the loss distribution of aggregate
claims. For a real-valued univariate random variable X on a probability space
(Ω,F , P ) such that P (X ̸= 0) > 0, Esscher’s problem is to construct a measure
P ′ equivalent to P (P ′ ∼ P ) such that EP ′ [X ] = 0. The idea is the following:
define a measure Q ∼ P by

Q(dω) = ce−X(ω)2P (dω), with ω ∈ Ω,

where c is the normalizing constant c = 1/EP [e−X2
]; then let ξ(θ) = EQ[eθX ]

for θ ∈ R, and finally

Zθ(ω) =
eθX(ω)

ξ(θ)
.

The map x (→ eθx/φ(θ) is called the Esscher transform with parameter θ.
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Now the measures P ′
θ are costructed via the

P ′
θ(dω) = Zθ(ω)Q(dω) =

eθX(ω)

ξ(θ)
Q(dω).

Then defining P ′ = P ′
θ, it is easy to verify that P ′ ∼ P and EP ′ [X ] = 0.

Esscher transform parameter allows to identify, as explained for instance by
Hubalek and Sgarra in [40], a particular measure, namely the Esscher equivalent
martingale measure for exponential process, with respect to which the “correct”
(i.e. no arbitrage) price of a financial activity is equal to its future discounted ex-
pected value. In the original paper by Grigelionis [36] one finds the following fun-
damental theorem, which allows to establish the martingality of discounted geo-
metric Meixner process with respect to the specific measure defined in the claim,
and to construct the analogue of the Black-Scholes’ formula for Meixner process:

Theorem 2. The unique Esscher transform parameter θ⋆ ∈ R for which the
discounted geometric Meixner process

S0 exp{Xt − rt}

with t ≥ 0, S0 > 0, r ∈ R is a martingale, is given by

θ⋆ =
2

α
arccos

| sin(α/2)|
√

1 + ζ2 − 2ζ cos(α/2)
−
β

α
.

where ζ = exp (µ− r)/2δ, θ⋆ solves the equation

cos
α(θ⋆ + 1) + β

2
= ζ cos

αθ⋆ + β

2
.

Proof. see Grigelionis [36].

As it has been pointed out by Kallsen and Shiryaev in [42], two different
Esscher martingale transforms exist for Lévy processes according to the choice
of the parameter which defines the measure: one turns the ordinary exponen-
tial process into a martingale, and the second one turns into a martingale the
stochastic exponential. They have been called the Esscher martingale transform
for the exponential process and the Esscher martingale transform for the linear
process respectively. An approach to pricing contingent claim in conditions of
incomplete market is also given by Chan, [19].

It has been shown by Esche and Schweizer in [28] that for exponential Lévy
models the Esscher martingale transform for the linear process is also the min-
imal entropy martingale measure, i.e. the equivalent martingale measure which
minimizes the relative entropy, and that this measure has also the property of
preserving the Lévy structure of the model (see Hubalek and Sgarra, [40]).

Properties of minimal entropy martingale measure and its financial meaning
are provided in a theoretical paper by Frittelli, [33], while in a work by Fujiwara
and Miyahara, [34], conditions are provided for the existence of the minimal
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entropy martingale measure for a general geometric Lévy process of the form
St = S0eXt , t ≥ 0, with Xt enjoying an infinitely divisible distribution. Unfortu-
nately these conditions applied to Meixner process are not easily approachable in
terms of the involved calculations. In this context, nonetheless, a theoretical pa-
per by Jeanblanc, Klöppel andMiyahara, [41], proves the existence in general un-
der suitable conditions of a sequence of measures which converges to the minimal
entropy martingale measure. The main problem of finding a closed form for such
a measure in Meixner process case remains anyway unsolved, while a general
solution of the problem can be found also in the book by Cont and Tankov [23].

Let us now follow a different route for defining Meixner process and enter the
context of orthogonal polynomials.

5. Definition of Meixner process via orthogonal polynomials

Introduction of Meixner process based on orthogonal polynomials theory takes
as a starting point the solution of an hypergeometric difference equation under
suitable conditions on coefficients (see Schoutens, [61]). These conditions gen-
erate different families of orthogonal polynomials that can be obtained in the
framework of the well known Askey scheme (see also [43] for a general version
of the Askey scheme). In this context stands as a limit case of both Hahn and
dual Hahn polynomials the family of Meixner-Pollaczeck polynomials. These
Meixner-Pollaczeck polynomials can be introduced by the expression

P (a)
n (x;φ) =

(2a)n exp{inφ}
n

2F1(−n, a+ ix; 2a; 1− e−2iφ),

where a > 0, 0 < φ < π, and (a)n is the Pochhammer symbol, defined in terms
of the Euler Gamma function as

(a)n =
Γ(a+ n)

Γ(a)
, n > 0;

moreover, 2F1(−n, a2; b1; z) is a particular case of the generalized hypergeomet-
ric series with the first numerator parameter equal to a negative integer.

Namely

pFq(−n, . . . , ap; b1, . . . , bq; z) =
n
∑

j=0

(−n)j . . . (ap)j
(b1)j . . . (bq)j

zj

j!
.

The orthogonality relation for these polynomials is given by the following

1

2π

∫ +∞

−∞
e(2φ−π)x|Γ(a+ ix)|2P (a)

m (x;φ)P (a)
n (x;φ) dx =

=
Γ(n+ 2a)

(2 sinφ)2an!
δm,n, a > 0, 0 < φ < π;

From [43], for instance, it can also be observed that well known family of La-
guerre polynomials La

n(x) can be defined through Meixner-Pollaczeck polyno-
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mials with

lim
φ→0

P
( 1
2a+

1
2 )

n

(

−
x

2φ
;φ

)

= L(a)
n (x)

Connection between this family of polynomials and corresponding Lévy pro-
cesses comes from the definition of a particular set of polynomials by means of
a power series generating function.

We are going to summarize in sections 5.1, 5.2 and 5.3 the links between
orthogonal polynomials and Lévy processes as described by Schoutens in [61].

5.1. Connection between orthogonal polynomials and Lévy processes

Let f(t) and g(t) be functions for which all the necessary derivatives are defined:
it can be shown that the equation

f(z) exp{xu(z)} =
∞
∑

m=0

Qm(x)
zm

m!
(5.1)

generates a family of polynomials {Qm(x),m ≥ 0} when both functions u(z)
and f(z) can be expanded in a formal power series and if it holds that u(0) = 0,
u′(0) ̸= 0 and f(0) ̸= 0.

Polynomials Qm(x) defined like this are of exact degree m and are called
Sheffer polynomials and any set of such polynomials is called a Sheffer set. If
now τ is defined as the inverse function of u, i.e. such that τ(u(z)) = z, then τ
also can be expanded formally in a power series with τ(0) = 0 and τ ′(0) ̸= 0.

Now let an additional parameter t ≥ 0 into the polynomials defined in (5.1)
by replacing f(z) with f(z)t.

Definition 3. A polynomial set {Qm(x, t),m ≥ 0, t ≥ 0} is called a Lévy-
Sheffer system if it is defined by a generating function of the form

f(z)t exp{xu(z)} =
∞
∑

m=0

Qm(x, t)
zm

m!
(5.2)

where

(i) f(z) and u(z) are analytic in a neighborhood of z = 0;
(ii) u(0) = 0, f(0) = 1 and u′(0) ̸= 0;
(iii) 1/f(τ(iθ)) is an infinitely divisible characteristic function.

If condition (iii) is satisfied there is a Lévy process {Xt, t ≥ 0} defined by
the function

φ(θ) = φX(θ) =
1

f(τ(iθ))
. (5.3)

It can be observed, by means of the work by Anshelevich [2], that both Qn(Xt)
and Qn(Xt, t) are martingales. The basic link between the polynomials and the
corresponding Lévy processes is the following martingale equality

E[Qm(Xt, t)|Xs] = Qm(Xs, s), 0 ≤ s ≤ t, m ≥ 0. (5.4)
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In fact it holds, for the left hand side of the equality above, that

∞
∑

m=0

E[Qm(Xt, t)|Xs]
zm

m!
= E

[

∞
∑

m=0

Qm(Xt, t)
zm

m!

∣

∣

∣

∣

∣

Xs

]

=

= E[f(z)t exp{u(z)Xt}|Xs] =

= f(z)t exp{u(z)Xs}E[exp{u(z)(Xt −Xs)}|Xs];

whilst for the righthand side of (5.4),

∞
∑

m=0

Qm(Xs, s)
zm

m!
= f(z)s exp{u(z)Xs}

And then the combination of the two expressions above with the stationary
increments property of Lévy process leads to

E[exp{u(z)(Xt −Xs)}|Xs] = f(z)s−t;

comparing this relationship with the equation determining the Lévy process

E[exp{iθ(Xt −Xs)}|Xs] = φ(θ)t−s,

then it can be observed that (5.4) holds true if and only if (5.3) holds.

5.2. Meixner set of orthogonal polynomials

In his 1934 paper [51], Josef Meixner determined all sets of orthogonal polyno-
mials that satisfy relation (5.1).

By application of operator τ(D) defined by recurrence as

τ(D)Qm(x) = mQm−1(x), m ≥ 0,

where D = d/dx is the differential operator with respect to x, by means of the
relation

Qm+1(x) = (x + lm+1)Qm(x) + km+1Qm−1(x), (5.5)

where lm ∈ R, km < 0, m ≥ 2, a differential equation for function τ can be
obtained:

τ ′(y) = 1− λτ(y)− κτ2(y), (5.6)

where lm+1 − lm = λ and κ ≤ 0.
Moreover the following differential equation for f(z) can be obtained:

f ′(z)

f(z)
=

k2z + l1
1− λz − κz2

. (5.7)

with k2 < 0. The above denominator can now be factorized as:

1− λz − κz2 = (1− αz)(1− βz),
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for two real numbers α,β, with αβ > 0. Considering (5.6) a differential equation
for u(z) can be drawn:

u′(z) =
1

(1− αz)(1 − βz)
. (5.8)

Explicit solutions of equations (5.6), (5.7), (5.8) are known. This allows to
determine the underlying process via an identification of parameters in Kol-
mogorov representation (2.4); the following equality holds:

ψ(θ) = logφ(θ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

iθ(α+ β) + log((α−β)/(αeiαθ −βeiβθ))

αβ
, if 0 ̸=α ̸=β ̸=0,

iθ

α
−

log(1 + iαθ)

α2
, if α = β ̸= 0,

iθ

α
−

(1 − exp(−iαθ))

α2
, if α ̸= β = 0,

−
θ2

2
, if α = β = 0.

The study of generating functions for polynomials belonging to Meixner class,
is carried further with two papers by M.Bożejko and E.Lytvynov [15, 16].

5.3. Meixner process from Meixner-Pollaczeck polynomials

When α ̸= 0,β = ᾱ, the solutions of (5.6), (5.7), (5.8) above become

u(z) =
1

α− ᾱ
log

(

1− ᾱz

1− αz

)

,

f(z) = (1− αz)
1

α(α−ᾱ) (1− ᾱz)−
1
ᾱ
(α−ᾱ),

ψ(θ) = i
α+ ᾱ

αᾱ
θ +

1

αᾱ
log

(

α− ᾱ

α exp(iαθ)− ᾱ exp(iᾱθ)

)

and the following expression is obtained for the basic polynomials
∞
∑

m=0

Qm(x; t)
zm

m
= (1− αz)

t−αx
α(α−ᾱ) (1− ᾱz)

(ᾱx−t)
ᾱ(α−ᾱ)

Since β = ᾱ it is natural to write α = ρ exp(iζ); let now be Xt as in (4.1) with
µ = 0 and also X1 = X ; it is necessary now to identify function ψ(θ) above with
a suitable variant ψX(θ).

With the introduced expression for α, the argument within the logarithm in
the above expression for ψ(θ) can be rewritten in the form

α− ᾱ

α exp(iαθ) − ᾱ exp(iᾱθ)
= exp(−iθρ cos ζ)

sin ζ

sin(ζ + iθρ sin ζ)
. (5.9)

Hence we put ζ = π/2+ a/2 in the expression for ψX(θ). Taking δ = 1 again in
(4.1), it holds that

ψ(θ) = i
θ

ρ
cos ζ +

1

2ρ2
ψX(2ρθ sin ζ). (5.10)
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Recalling now representation (2.2), and that in presence of an infinitely divisible
distribution with characteristic function φ(θ), a Lévy process Xt may be defined
through the relations

exp(ψX(θ)) = φX(θ) = E[exp(iθX1)] = φ(θ),

it can be observed that if {Yt, t ≥ 0} is a Lévy process with characteristic
function

E[eiθYt ] = exp{tψY (θ)},

then also Xt = At+BYCt, with C > 0 is a Lévy process determined by

ψX(θ) = iθA+ CψY (Bθ). (5.11)

From (5.10), the identification between the processes {Xt, t ≥ 0} and the newly
defined Meixner process {Ht, t ≥ 0} is then achieved by choosing

A =
1

ρ
cos ζ, B = 2ρ sin ζ, C = (2ρ2)−1.

So

Xt =
t

ρ
cos ζ + 2ρ sin ζHt/(2ρ2).

The Meixner-Pollaczeck polynomial is defined for λ > 0 and 0 < ζ < π by

∞
∑

m=0

Pm(y;λ, ζ)
wm

m!
=

(1− exp{iζ}w)−λ+iy

(1− exp{−iζ}w)λ+iy

Here the identification is simple and leads to

w = zρ, λ =
t

2ρ2
, y =

x

2ρ sin ζ
−

t

2ρ2
cot ζ.

Moreover, the equality

Qm(x, t) = m!ρmPm

(

x

2ρ sin ζ
−

t

2ρ2
cot ζ,

t

2ρ2
, ζ

)

,

easily brings to the martingale property

E

[

Pm

(

H t

2ρ2
;

t

2ρ2
, ζ

)

∣

∣

∣

∣

∣

H s

2ρ2

]

= Pm

(

H s

2ρ2
;

s

2ρ2
, ζ

)

.

A consequence is that the Meixner(1, 2ζ−π, δ, 0) distribution is the measure of
orthogonality of the Meixner-Pollaczeck polynomials {Pn(x; δ, ζ), n = 0, 1, . . .}.

Moreover the monic Meixner-Pollaczeck polynomials {P̃n(x; δ, ζ), n = 0, 1, . . .}
are martingales for the Meixner process (α = 1, δ = 1, ζ = (β + π)/2):

E

[

P̃n (Ht; t, ζ)

∣

∣

∣

∣

∣

Hs

]

= P̃m (Hs; s, ζ) .
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It remains to determine K in (2.4); recalling the usual exponential form for α
one gets

∫ +∞

−∞
exp(iθx)dK(x) =

(

sin ζ

sin(ζ + iθρ sin ζ)

)2

.

A little algebra reveals that K has a derivative with expression

dK(y)

dy
=

sin ζ

πρ

∣

∣

∣

∣

∣

Γ

(

1−
iy

2ρ sin ζ

)

∣

∣

∣

∣

∣

2

exp

(

−
y(π − 2ζ)

2ρ sin ζ

)

.

From a strictly theoretical point of view, following the approach of Dominici
in [24] it is possible to evaluate the Fisher information of the Meixner-Pollaczeck
orthogonal polynomials, a concept introduced for general orthogonal polynomi-
als by Sanchéz-Ruiz and Dehesa in [59]. They considered a sequence of real
polynomials, orthogonal with respect to the weight function ρ(x) on the inter-
val [a, b]

∫ b

a
Pn(x)Pm(x)ρ(d)dx = hnδn,m, m, n = 0, 1, . . . (5.12)

with deg(Pn) = n. Introducing the normalized density functions

ρn(x) =
[Pn(x)]2ρ(x)

hn
, (5.13)

they in fact defined the Fisher information corresponding to the densities (5.13)
by

I(n) =
∫ b

a

[ρ′n(x)]
2

ρn(x)
. (5.14)

Applying the last formula to the classical hypergeometric polynomials, in Sanchéz-
Ruiz and Dehesa [59] I(n) for Jacobi, Laguerre and Hermite polynomials is
evaluated.

The main theorem in Dominici [24] is now the following:

Theorem 3. The Fisher information of the Meixner-Pollaczeck polynomials is
given by

Iφ(P
(a)
n ) =

∫ +∞

−∞

[

∂

∂θ
ρn(x)

]2 1

ρn(x)
dx =

2[n2 + (2n+ 1)a]

sin2(φ)
, n = 0, 1, . . .

(5.15)

Proof. see Dominici [24].

As a closing remark, it is useful to recall that orthogonal polynomials also
provide an auxiliary link with Stein’s method. This is basically a procedure of
finding approximations for the distribution of a random variable, which at the
same time give an estimation of the approximation error involved. This means
finding bounds on the distance between two probability distributions with re-
spect to a specific metric. As again shown in Schoutens [61], a key theoretical
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element is the Stein-Markov operator; it can be shown that it obeys the same
hypergeometrical differential (or difference according to the discreteness of in-
volved variable) equation which generates the different families of orthogonal
polynomials mentioned above. An important step of the theory is then to for-
mally solve the Stein-Markov equation by means of orthogonal polynomials,
which basically represent the eigenfunctions of the cited operator. For further
details, for instance see again Schoutens [61]. Furthermore, the original paper
by Meixner, [51], is the basis of more advanced studies on the so called Meixner
class of measures; see for instance Anshelevich [3].

As a closing topic, let us inspect the possibility of formulating Meixner pro-
cesses in terms of a subordinated Brownian motion.

6. Meixner process as a subordinated Brownian Motion

An extensive list of definitions of Lévy processes used in finance can be found
for instance in Schoutens [63]. Due to a work by Monroe [55] it is known that
any semimartingale can be written as a time changed Brownian motion, and
so even Meixner process has theoretically its representation as a time changed
Brownian motion.

It turns out, nonetheless, that as we have briefly introduced, for some Lévy
processes like the Variance Gamma process and the Normal Inverse Gaussian
process, the alternative construction as time changed Brownian motions is com-
pletely characterized by their specific time change; other processes such as the
CGMY process, defined as the pure jump process having the following Lévy
measure

νCGMY (x) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C
exp(−G|x|)

|x|1+Y
, if x < 0

C
exp(−Mx)

x1+Y
, if x > 0

with C,G,M > 0 and Y ∈ (−∞, 2), as described in [18], or the Meixner process,
are directly identified by their Lévy measure and their specific time change is
not a priori known.

This problem has been solved in a work by Madan and Yor, [48], in which
a complete characterization of Meixner process as a time changed Brownian
motion can be found. Here follows a brief summary of their idea.

6.1. Lévy measure of a subordinated Brownian motion

Suppose the Lévy process Xt is obtained by subordinating a Brownian motion
with drift (i.e. the process θu + Wu, for {Wu, u ≥ 0} a standard Brownian
motion) by an independent subordinator Yt with Lévy measure ν(dy). By a
result in Sato, [60], (30.8), pg.198, the Lévy measure of the process Xt is given
by µ(dx), where

µ(dx) =

∫ ∞

0

1√
2πy

exp

{

−
(x− θy)2

2y

}

ν(dy) dx.
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6.2. Explicit time change for Meixner process

Lévy measure ν(dx) for the Meixner process has been previously introduced in
(3.6). The writing of this process as a time changed Brownian motion is given
in the already cited paper by Madan and Yor ([48], from pg.20 on): here it is
clarified how it is necessary to search for the Lévy density l(u) of a subordinator
such that

ν(dx) =

∫ +∞

−∞

1√
2πy

exp

{

−
(x−Ay)2

2y

}

l(y) dy dx =

= eAx

∫ +∞

−∞

1√
2πy

exp

{

−
x2

2y
−

A2y

2

}

l(y) dy dx.

Setting A = β/α the following must hold for a suitable l(y):

δ

x sinh
(

πx
α

) =

∫ +∞

0

1√
2πy

exp

{

−
x2

2y
−

A2y

2

}

l(y) dy

With somewhat delicate algebra one obtains

l(u) =
δα√
2πu3

g(u),

where

g(u) = P
(

M (3)
1 ≥ C

√
u
)

exp

{

−
A2u

2

}

,

with

1
[

M (3)
1

]2 = T (3)
1 ,

and

M (3)
1 = max

t≤1
R(3)

t

for R(3)
t the BES(3) process.

For the absolute continuity of the subordinator with respect to the one sided
stable 1/2 subordinator, it is required, and easily verified that

∫

1√
u3

(

√

g(u)− 1
)2

du < ∞

Also, for the simulation of Meixner process as a time changed Brownian motion
it is possible to represent (see Pitman and Yor’s paper [56])

P
(

M (3)
1 ≥ C

√
u
)

=
+∞
∑

n=−∞

(−1)n exp

{

−
n2π2

2C2u

}

.
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6.3. Simulation of the Meixner process

The first step is to simulate the jumps of the one sided stable 1/2 subordinator
with Lévy density

k(x) =
δα√
2πx3

, x > 0.

The small jumps of the subordinator are approximated using the drift

ζ = δα

√

2ε

π

while the arrival rate for the jumps above ε is

λ = δα

√

2

πε

and the jump sizes for the one sided stable 1/2 subordinator are

yj =
ε

u2
j

for an independent uniform sequence {uj}. Then the function g(y) at the point
yj is evaluated, and the time change variable is defined as

τ = ζ +
∑

j

yj1I{g(yj)>wj},

for another independent uniform sequence {wj}. It can also be observed that
the function g(y) only uses the parameters α,β and is independent of the pa-
rameter δ.

Finally the value of the Meixner random variable or equivalently the unit
time level of the process is then generated as

X =
β

α
τ +

√
τZ, (6.1)

where Z is an independent standard normal random variable.

The result of some simulations we have carried out relying on the theoretical
algorithm described above, is shown in the following figures. Their importance
is given by the possibilty of determine the influence of the parameters in the
distribution of the increments of the process: this in turn gives the opportunity to
adjust the model and fit it to data via a suitable parameter estimation method.

Here are some examples, obtained with an original R routine, for different
values of the parameters:
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Fig 1. Possible trajectories of a Meixner process with the following parameter values for the
triplet (α, β, δ): (0.25, 0.002, 0.2) (left), (0.25, 0.002, 20) (right).

Fig 2. Possible trajectories of a Meixner process with the following parameter values for the
triplet (α, β, δ): (0.25, 0.02, 2) (upper left), (0.25, 0.002, 2) (upper right), (25, 0.002, 2) (lower
left), (0.25, 0.002, 2) (lower right).
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7. Conclusions and further research ahead

It is quite clear that departure from classical mathematical models for finance
governed by Brownian motion and Gaussian distribution, although solving some
structural issues, is not completely straightforward. Theoretical properties and
general conditions are mostly well known, but one important problem is given
by computational effort, for instance for the evaluation of the minimal entropy
martingale measure.

General results exist, as in the book by Cont and Tankov [23], on how to
construct minimal entropy martingale measure for exponential Lévy models and
its relationship with Esscher transform martingale measure. Some calculations
have been performed during this work specifically for Meixner process, but have
not given any result at the moment. Other obscure points concern minimal
martingale measure and optimal variance martingale measure.

In any case, our main goal was to focus interest on a process that undoubtedly
gives better performances when considered as a mathematical financial model.
Another point is that this claim has been shown not making use of ad-hoc
software and creating from scratch all the pieces of software that in literature
are often just suggested or hinted at.

So one of the goals was to show that it is possible to apply this process in
modeling financial data with small efforts in terms of programming.

Another interesting issue for developing research is given by the study of
subordinated Meixner process, which is missing to our knowledge from analyzed
literature.

Referring to a work by Aurzada and Dereich, [5], a small deviations problem
for Meixner process can be investigated.

From an applied point of view, it has turned out that some seismological
graphics happen to be very similar to volalility clusters graphics shown for
instance by Schoutens in [62], Fig.6; namely, some background noise recorded on
a daily basis by seismometers and having causes depending on human activity
and on natural phenomena not strictly of a seismological origin, has such a
representation. It can be interesting to investigate the possibility of fitting these
data with Meixner-SV models such as as the one introduced by Schoutens.

The main impression is that in this difficult topic many results are added by
very little pieces. Still by 2006 no one had been able to express Meixner process
as a subordinated Brownian motion, which opened the possibility to simulate
the process as we have seen. Nonetheless the study of simulated trajectories as
the ones we have introduced here is still missing.

The importance of these models is clear, providing a real flexible and fitting
instrument mainly for financial applications; similar models such as hyperbolic
models as introduced in [8, 9, 26], have been employed in theoretical quantum
physics and in modeling natural phenomena such as turbulence or sand deposits.

We have also shown how these kinds of models could provide a sort of aperture
towards different fields of mathematics, involving statistics indirectly, such as
the theory of differential equations and orthogonal polynomials.
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This gives the models a sort of mathematical reliability, descending from
Meixner’s cited 1934 work, which was known and settled mainly for Brownian
motion only up to that moment.
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[14] B. Böttcher and N. Jacob. Remarks on Meixner-type processes. In
Probabilistic methods in fluids: proceedings of the Swansea 2002 workshop,
pages 35–47, Singapore, 2003. World Scientific Co.
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erty: how and why. Stoch. Proc. Appl, 115(2):299–327, 2005. MR2111196

[29] F. Esscher. On the probability function in the collective theory of risk.
Skandinavisk Aktuarietidskrift, 15:175–195, 1932.

[30] E. Fama. Mandelbrot and the stable paretian hypothesis. Journal of
Business, 36:420–429, 1963.

[31] W. Feller. An Introduction to Probability Theory and Its Applications,
volume 2. J.Wiley and sons, 2nd edition, 1971. MR0270403
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