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Inverse stochastic orders
and generalized Gini functionals

Summary - We investigate the class of stochastic orders induced by Generalized Gini
Functionals (GGF) [Yaari (1987) dual functionals] and identify the maximal classes
of functionals associated with these orders. Our results are inspired by Marshall
(1991) and are dual to those obtained for additive representations in Miiller (1997)
and in Castagnoli and Maccheroni (1998). The closure of the convex hull generated
by a given set of probability distortion functions (F) [or by a set of rank-dependent
weighting functions (V)] identifies the maximal class of functionals associated with
the stochastic orders that are consistent with F [or V]. Rank-dependent weighting
functions obtained as convex combinations of indicator functions identify GGFs that
can be considered the basis of relevant stochastic orders in decision theory and in-
equality measurement. As hinted by Wang and Young (1998) and Zoli (1999, 2002)
the stochastic orders obtained are related to the class of inverse stochastic dominance
(ISD) conditions introduced in Muliere and Scarsini (1989). Making use of our re-
sults we review some stochastic dominance conditions that can be applied in decision
theory, inequality, welfare and poverty measurement. These conditions are associated
with orders implied by first order ISD and implying second order ISD, as well as with
orders implied by the latter.

Key Words - Stochastic orders; Inverse stochastic dominance; Lorenz dominance;
Generalized Gini indices; Inequality measurement; Welfare measurement,

1. INTRODUCTION

The seminal work of Gini (1914) on the measurement of concentration
of income distributions has stimulated a large literature on inequality, welfare
and poverty measurement and in decision theory [see Sen, 1973 and Lambert,
2001]. The close and direct relationship between the Gini index and the Lorenz
curve has been one of the main reasons for the wide application of the index
in empirical analysis. However, from the theoretical point of view the index
has been criticized because of its inconsistence with the orders induced by
utilitarian (i.e. additively separable) evaluation functions (see Newbery, 1970).
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As argued in Yaari (1987, 1988) and Weymark (1981) the appropriate nor-
mative framework of analysis that is consistent with the Gini index is the dual
approach where income distributions are evaluated according to weighted av-
erages of incomes ranked in increasing order and weighted according to their
positions. In decision theory the formulation of Yaari dual functionals (also
known as Generalized Gini functionals) is more commonly known as aver-
ages of probability distributions where probabilities are distorted. As shown in
Muliere and Scarsini (1989), Wang and Young (1998), Zoli (1999), Chateauneuf
et al. (2000, 2002) and Aaberge (2004) the stochastic orders induced by Yaari
functionals are related with the concept of inverse stochastic dominance intro-
duced in Muliere and Scarsini (1989).

In this work we focus on Yaari functionals and consider the stochastic
orders obtained as unanimous dominance of these functionals for a given set of
admissible probability distortions, or alternatively considering sets of weighting
functions. For any set of distortion [weighting] functions we are interested in
identifying the maximal set of distortions [weights] inducing the same stochastic
order. Our results are inspired by Marshall (1991) and are dual to those obtained
for additive representations in Miiller (1997) and in Castagnoli and Maccheroni
(1998). Given a set of policy makers with contrasting views, formalized by
differing probability distortions, any policy maker exhibiting a distortion func-
tion belonging to the closure of the convex hull of those of the formers will
evaluate distributions consistently with them. A related result is derived also
for weighting functions. Our methodology will also make possible to investi-
gate the normative relevance of small sets of distortion [weighting] functions
that can constitute the bases for a given stochastic order. In particular, for
weighting functions (more common in the literature on inequality and welfare
measurement) it is possible to identify bases formed by families of transfor-
mations or combinations of indicator functions specified in the quantiles space.
These bases are shown to induce stochastic orders that are equivalent to the
inverse stochastic dominance conditions or to some other alternative conditions
specified making use of thresholds partitioning income distributions into groups
identified by the positions in the income ranking.

1.1. Preliminaries and notation

We consider stochastic dominance conditions and related stochastic orders
associated with Yaari (1987) functionals.

Let (2, A, P) be a probability space. A random variable (income distri-
bution) is a measurable function X : 2 — R,. We assume that P is adequate
(ie. either P is non-atomic or Q is finite and P is uniform).

Considering the analogy between income distributions and random vari-
ables, § could be interpreted as a population (either discrete or continuous) of
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individuals and X as a non-negative bounded random variable. In our frame-
work X(w) denotes the income level of agent w € 2, therefore X ¢ £l -ds

called income profile. If Q = {w), w,,... w;,.. .w,}, and a uniform P at-
taches equal mass 1/n to each w;, then we have the n—dimensional empirical
case represented by the vector X : = (x1, x5, ...x;, .. .X,) where x; := X(w;).

Let Fx(t) denote the cumulative distribution function of an income profile X
with bounded support and finite mean wu(X) = O+°°t dFx(t). The decumu-
lative distribution function is Fx () = P{X >t} =1- Fx@), it is always
non-increasing and right-continuous. Moreover, we let

Fy'(p):=inf{x € Ry : Fx(x) > p} with 0<p<1

be the left continuous inverse distribution function showing the income of an
individual at the p quantile of the distribution. Denote by C ([0, 1]) the set of
all continuous functions on the unit interval [0, 1], endowed with the supnorm.
A non-decreasing function f in C ([0, 1]) such that SO =0and f(1) =1,
is called probability distortion.

Given two random variables X and Y, and a family F of probability
distortions f, we consider the class of stochastic orders of the form

X;;Y@/QXd(foP)z/QYd(foP) VfeF (1)

introduced in Yaari (1987, 1988) and axiomatically characterized in Maccheroni
(2004). Dually to what done in Miiller (1997) and Castagnoli and Maccheroni
(1998) for integral stochastic orders, in this note we characterize the maximal
set of distortions representing a given stochastic order. This problem was first
raised for integral stochastic orders in Marshall (1991).

As observed by Chateauneuf, Cohen, and Meilijson (1997) and Chateauneuf
and Moyes (2004, 2005) several orders used to rank the riskiness of random
variables or the dispersion of income distributions exhibit this form. For ex-
ample, Rothschild and Stiglitz (1970)’s second order stochastic dominance is
obtained when F is the set of all convex probability distortions; Bickel and
Lehman (1976)’s dispersion is obtained when F is the set of all probability dis-
tortions that are majorized by the identity; Jewitt (1989)’s location independent
riskiness is obtained when F is the set of all probability distortions that are
star-shaped at 1, and Muliere and Scarsini (1989) third order inverse stochastic
dominance is obtained when F is the set of all probability distortions with
non-decreasing second derivative [see Zoli, 1999 and Chateauneuf, Gajdos and
Wilthien, 2002].

In this work we focus on comparisons of income distributions and analyze
(i) stochastic dominance conditions 3 obtained comparing directly transforma-
tions of income distributions and (ii) stochastic orders > based on (1). In
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particular we express the stochastic order > in terms of the class of Gener-
alized Gini Social Evaluation Functions (GG-SEFs) also known as generalized
Gini functionals which is commonly used in the theoretical and applied litera-
ture on income distributions. The GG-SEFs have been introduced in Weymark
(1981) and consider weighted averages of incomes ranked in increasing order
and weighted according to their positions [see also Ebert, 1988, Ben Porath
and Gilboa, 1994 and Safra and Segal, 1998].

To be more precise, we restrict attention to absolutely continuous distortion
functions f. We let V(1 —p) =1— f(p) for p € [0, 1] and consider the set
of weights v(p) > 0 for p € [0, 1] such that V (p) = J§ v(t)dt. Thus the
Generalized Gini SEFs can be expressed as

1
W,y (X) = /0 v(p) - F5'(p)dp, @)

where v(p) > 0 denotes the weight attached to the p quantile.(*) A well known
subset of the GG-SEFs is the class of S-Gini [single parameter] SEFs E(3; .)
introduced in Donaldson and Weymark (1980, 1983) and Yitzhaki (1983). This
class of SEFs is parameterized by & > 1 and is obtained letting vip). =
§(1 — p)*! that is

1
855 X) =8 | (1= pf " F'(0)dp. o

Note that E(1; X) = u(X) while for § =2 we obtain the SEF associated with
the Gini index G(.) ie. B(2; X) = u(X)-[1-G(X)]. In general we can derive
the (relative) S-Gini index of inequality G(é; X) parameterized by J as

o te o B
G5 X) i=1- = ._/0 [1 8(1 — p) ]M(X)d

Throughout the paper we suppose that the weights are non-negative and inte-
grateto 1, 1.e. v € V0 where

B X)

1
W= {veL£;(0,1]): v=>0, and / v(t)dt = 1}.
0

In general, a class V C VO will represent an admissible set of weighting func-
tions, thus under the assumption of absolutely continuous f’s then (1) can be
equivalently restated in terms of (2) as:

X2 Y& W,(X)=>W,(Y) YveV. 4)

() For the empirical case the GG-SEFs reduces to Wi (x) = ZLI [V (%) -V (’—;l)} - X @) where
incomes x(;y are welfare ranked income realizations such that x() < X(i+1)-
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Our aim is to investigate the relation between the stochastic order >, and
stochastic dominance conditions.

The most common stochastic dominance condition in inequality measure-
ment is the partial ranking criterion based on Lorenz dominance. An income
profile shows no less dispersion than another, in terms of income shares, if
its Lorenz curve is nowhere below that of the other profile.(?) Making use of
Gastwirth (1971), the Lorenz curve for X is defined as:

_ [P FE®
Ly(p) = /0 P

We will say that income profile X Lorenz dominates income profile ¥, X =, ¥,
if and only if

Lx(p) =z Ly(p) for all p €[0,1].

If u(X) = p(Y) this condition is equivalent to second degree stochastic dom-
inance, which in tumn is equivalent to generalized Lorenz dominance obtained
comparing generalized Lorenz curves GLx(p) := u(X) - Lx(p). Generalized
Lorenz dominance of X w.r.t. Y requires to check that the following condition
is satisfied (Kolm, 1969 and Shorrocks, 1983):

p
/ A(t)dt > 0 for all p € [0, 1]
0

where A(p) = Al(p) := Fy'(p) - Fy'\(p).

The previous dominance conditions are obtained making use of comparisons
of integrals of inverse distribution functions, they are special cases of the family
of Inverse Stochastic Dominance (ISD) conditions introduced in Muliere and
Scarsini (1989). Let A’(p) := [f Ai=Y(t)dt fori = 2,3, ... The ISD condition
of order i (=) is obtained comparing the integral of the inverse distribution
functions derived recursively.

Definition 1.1. (Inverse Stochastic Dominance) X = Y iff A’(p) > 0 for all
p €[0,1].

Note that X =1 Y denotes rank dominance (Saposnik, 1981) while X %, ¥
denotes generalized Lorenz dominance.(®)

In what follows, after deriving the main results on the maximal set and the
bases of stochastic orders, we will review and investigate welfare comparisons
between distributions with different total means. In particular we identify bases

(®) See Atkinson (1970), Kolm (1969), Sen (1973), Dasgupta, Sen and Starrett (1973), Rothschild

and Stiglitz (1973) and Fields and Fei (1978).
() As argued in Muliere and Scarsini (1991) standard direct stochastic dominance and ISD are

equivalent only for first and second order.
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for ISD of order n and show that they are related with dominance for the class
of S-Ginis in (3) for a value of the parameter § = n — 1 when applied to
distributions truncated at quantiles p.

Then we will move to analyse stochastic orders based on specifications of
weighting functions that take into account population thresholds. It might be of
interest to point out that some dominance conditions obtained in next sections
will make use of comparisons of incomplete means that is of the functions
GL(p)/p measuring the average income of the subgroup of the p poorest
individuals. The value of AGL(p)/p can also be interpreted as the ratio of
the difference between the average income gap of the two distributions truncated
at quantile p when poverty line is fixed at a value z > max{Fy Y(p), Fy ' (p)}
and the headcount ratio of both distributions that coincides with p.

2. MAXIMAL GENERATORS FOR DUAL STOCHASTIC ORDERS

For a given stochastic order > as specified in (1) our main concern is
to identify the maximal set of distortion functions that is consistent with > .
That is, we aim at obtaining the larger possible set of views on the ranking
of distributions, formalized by the specification of distortion functions, that is
consistent with the stochastic order, and therefore is consistent with the views
specified by all distortion functions in F.

An implication of the result will allow to highlight conditions under which
it is possible to identify small sets of distortion functions inducing a given
stochastic order. We call these sets bases for the stochastic order. The selection
of a base inducing > will allow to make explicit the most elementary ethical
views underlying the stochastic order.

Building upon the results obtained for stochastic orders > in (1) we also
present analogous results that are valid for the stochastic orders >y in (4).

2.1. Main theorems

Let £ denote the set of all non-negative bounded random variables. We
say that a family G of probability distortions represents the stochastic order >
defined in (1) if and only if >¢ coincides with >; moreover we say that >¢
is weaker than > if and only if, for all X,Y € £L,

XY =X 2g Y.

We denote by ¢o (F) the (supnorm) closed convex hull of a subset F of
C ([0, 1]) . We are now ready to state our first results proved in the Appendix.

Theorem 2.1. For every set F of probability distortions, the maximal family of
probability distortions representing > r is €0 (F).
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Corollary 2.1. Given two sets F and G of probability distortions, =g 1S weaker
than > if and only if co (G) C <o (F). In particular, > 5 and =g coincide if and
only if co (G) = co (F).

The obtained results are valid for all distributions in LY and all sets of
distortion functions in C ([0, 1]). Theorem 2.1 formalizes the intuition that
given two different distortion functions any distortion function obtained as a
convex combination of those ranks distributions consistently with the stochastic
order induced by them. Indeed the theorem generalizes the intuition to all
stochastic orders and associated sets of distortion functions focussing on the
closure of their convex hull. Moreover it makes evident that only the distortion
functions in c¢o () can be consistent with > .

From Theorem 2.1 it follows that any stochastic order is represented by
a maximal set of distortions, and this maximal set is unique. Thus if two
stochastic orders exhibit the same maximal set then they coincide. Therefore
all subsets of an initial set of distortion functions generating the same closed
and convex set can be considered as a base for the associated stochastic order.

Theorem 2.1 and Corollary 2.1 provide neat results for the stochastic orders
in (1) expressed in terms of distortion functions, however, our main concern
is to make use of these results to derive analogous results for the associated
class of stochastic orders in (4).

For a given stochastic order, focussing on bases will allow to make explicit
the underlying normative assumptions and to easily implement the order. The
specification in (4) makes use of the weighting functions to formalize different
concerns on incomes based on their rank. The possibility to select bases of
weighting functions (instead of distortion functions) inducing a given stochastic
order will therefore provide a useful tool to evaluate the normative relevance of
the associated stochastic order. Expressing the normative content of a stochastic
order in terms of small sets of weights seems in our view more appealing
for the evaluation of income distributions since it makes explicit use of two
important informations: the relative weight associated with an income within
the distribution and its relative position.

The main concern related to the application of the results in Theorem 2.1 to
the stochastic orders in (4) is that while distortions functions belong in general
to the class C ([0, 1]), those associated with weighting functions are absolutely
continuous functions on [0, 1].

Let AC ([0, 1]) denote the set of absolutely continuous functions on [0;1].
If f is absolutely continuous, standard analysis results guarantee that:

(i) f is almost everywhere differentiable on [0,1], f' € £} ([0,1]), and
f )= [L f (@®dt for all pe[0,1].
(i) For all X € £, [oXd(foP)= [} f'(1 —1)- F7! (¢) ds.
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In this case, vy (r) = f'(1—1) is called weighting function associated
with f. In general, a weighting function v is an element of L{ ([0, 1]) such
that fol v () dt = 1; the associated probability distortion is

P 1
f,,(p)=/0 v(l—t)dt=/ v(s)ds, Ypelo,1].

1-p

Instead of a set F of probability distortions we take as primitive concept the
set V of weighting functions and put

F=Fp=1{f v eV}

In this case we write >y instead of >,. For every set V of weighting functions,
we put

co(V) = {f’(l—t):feza({fv:veV})mAC([o,l])},

that is we identify all absolutely continuous distortion functions belonging to
the closure of the convex hull of the distortion functions derived starting from
V, and we consider the set of all weighting functions that are associated with

them.

Proposition 2.1. Let V, W be sets of weighting functions, Zyy is weaker than >y
if and only if W C co (V). In particular,

(1) ¢o (V) is the maximal set of weighting functions that represents 2vy;

(2) >y and >y coincide if and only if co (W) = co (V).

The idea behind the proposition is very simple: if >z, is weaker than
=7, then Fyy C ¢o (Fw) € ¢o (Fy) and from

co (Fw) NAC ([0, 1]) € co (Fy) N AC ([0, 1])
it follows that W C ¢o (W) C ¢o (V). Conversely, if W C co (V), then

Fw gf’a(v) =E§({fv ‘v EV})OAC([O’ 1]) EC_O_(fv),

Ci

and hence ¢o (Fy) C ©o (Fy), which in turn implies that >y is weaker than
>y. See the Appendix for details.

The practical verification that >,y is weaker than >, then goes as follows:
if W C co(V), we are done; else we have to check that for all w € W
there exists a sequence v" € co (V) such that fin — f, uniformly; that is
fll_p v (1) dt — fll_p w (1) dt uniformly w.rt. p € [0, 1]. For example this is

guaranteed by v — w in L] ([0, 1]). Then:
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Corollary 2.2. For every V € V° we have co“1 (V) C o (V). In particular if
B CV, and for every v € V there exists a sequence v, in co (B) that converges to
v in Ly ([0, 1]), then > coincides with >,.

Therefore according to Proposition 2.1 a proper candidate for a base for
>y is any W such that ¢o (W) = ¢o (V). However, Corollary 2.2 shows that
in practice, taking the closure of co (V) in £; ([0, 1]), could be more conve-
nient and allows to identify more easily verifiable bases. This is precisely the
approach we follow in next section.

3. ORDERINGS OF INCOME DISTRIBUTIONS

In order to investigate the relationships between stochastic orders >y based
on GG-SEFs and inverse stochastic dominance conditions it will be first useful

to recall that according to (2) and (4)

1
X>VY<=>/ v(p) - A(p)dp >0 Vv € V.
0

Following the results in Theorem 2.1, Corollary 2.1 and Proposition 2.1 we
know that if X >,, Y then the weighting function 7 preserves >y [ie. X >y
Y = X >; Y] if and only if ¥ € co (V). Combining this result with the fact
that ¢o (V) € co (V) for any V,(*) as in Corollary 2.2, it is then possible to
make explicit the following remarks that will allow to work directly with the
closures of the convex hull of sets of weights instead of moving from weights
to distortions and coming back as required in Proposition 2.1.

Remark 3.1. v preserves >y if ¥ € ¢o (V).

Remark 3.2. In order to derive X >, Y it is sufficient to identify a set of
weights B s.t. BC co(V) and V C co(B). According to Remark 3.1 condition
X >p Y will be sufficient to guarantee X 2y Y since V C ¢o(B) moreover, it
will be also necessary since B C co(V).

Therefore, considering stochastic orders induced by subsets V of the set
V0 of normalized non-negative weights will require to restrict attention to the

closure of the convex hull generated by the weights in V.
In order to investigate the relationships between orders >y where V C V0
we will make direct use of classes of weights B that can be considered bases

for V.

Definition 3.1. (Bases for >y) Let V € V°, a set of weights B8 C 1° is a base
for >y if B C co(V) and V C co(B).

(*) Since V C L; ([0, 1]) we write €o (V) to denote the convex closure of ) in L1([0, 1]).
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Thus according to Remark 3.2 we have that 25 <— >y .

For a given stochastic order >y it is particularly interesting to focus on
bases such that B C V trying to identify minimal sets of weighting functions
inducing >y. Unfortunately while the maximal set of >y is unique, this is
not the case for the bases, moreover in general bases can be identified by
non overlapping sets of weights therefore it might not be possible to identify a
minimal set associated with a stochastic order as in next example.

Example 1. Let BY denote the set of all discontinuous functions in 1° and
B denote the set of all continuous functions in V° ie. BY := V\BY),. Then
co(BY) = co(Bg) = co(V’) thus >0 €>p50 < >y0.

Given the general impossibility to identify bases that are minimal sets for a
stochastic order we will focus mainly on specific subsets of V0 that will allow
to provide a more intuitive interpretation of the results. We will construct most
bases making use of the functions Ij ) (p) denoting the indicator function on
[0, @) i.e.

. 1 for p €[0,a)
low(p) = { 0 for p €[a,1].

Interpretation of the set of weights obtained combining transformations of in-
dicator functions is, in our opinion, often immediate since it involves directly
(i) the identification of a range of income units in the income ranking space
and (ii) the selection of a weight associated with the incomes belonging to these

units.
Next results identify bases for the ISD orders and will motivate also com-

parisons based on transformations of the Af(p) functions. In particular the
differences of incomplete means derived as A?(p)/p will play a crucial role
in the analysis.

3.1. Bases and generators of Inverse Stochastic Dominance

In this subsection we highlight the application of the procedure derived in
the previous section to the derivation of the ISD conditions.
We consider the set V! C V° obtained selecting from V° only weighting
functions such that v(1) = 0,(°) that is
V= {v eV’ :v(l) =0}

The bases for >, are given by the set B! ¢ V! of all functions assigning
constant positive weight to any interval of values [£, h), that is all

b](p, E, h) = 1/ (h = E) J [I[()’h)(p) - I[(),g)(p)] where 1 > h > ¢ > 0. (5)

(5) Note that by definition V© = Vlin £7 ([0, 1]). Making explicit condition v(1) = 0 will turn out
to be useful for the recursive derivation of the set V.
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As can be intuitively conjectured (see also formal derivation in Lemma A.1
in the Appendix) applying >,1 we obtain 2y1 and easily it can be checked
that we obtain also »; . Recalling known results by Mehran (1976) and Yaari
(1987, 1988) where 71— 2,,1We can summarize these findings as:

Proposition3.1. X >,1 Y <= X >, ¥V <= X &, V.

In order to restrict attention to inequality averse evaluations we consider
the set V2CV! of non increasing weights [see Mehran, 1976, Yaari, 1987, 1988,
Chateauneuf ef al. 2002]. That is

V?:= {v € V' : v non-increasing]}.

As shown in the Appendix (see Lemma A.2) the bases for 2y2 are given by
the set B? of functions assigning constant positive (and normalized) value to

an interval of positions [0, /), that is
by(p, h) :=1/h - Ip 4)(p) where h € (0, 1). (6)

Applying >,2 we obtain 3=, therefore we have [see Mehran, 1976, Yaari, 1987,
1988, Chateauneuf er al. 2002]:

Proposition3.2. X >, Y <= X >V & X », V.

We now show a trivial result based on a restatement of the definition of
the generalized Lorenz curve that will open the way to the interpretation of
ISD in terms of GG-SEFs dominance for distributions truncated at quantile
p. Let X, denote the income profile X truncated at quantile p such that
ngl (1) = F¢'(¢ - p), then pu(X,) is the incomplete mean of distribution X
evaluated for the poorest p proportion of individuals. Direct application of
> leads to

1 1
/Ol/h-I[o,h)(t)-A(t)dtzl/h/o An@®)dt > 0 ™)

for all 4 € (0, 1) where Ay (r) := Fy, () — Fy'(1) = A(¢ - h).
The following trivial result expresses 3=, in terms of comparisons of in-
complete means of distributions X and Y evaluated for all proportions p of

poorest individuals.
Remark 3.3. E(1; Xp) = n(X,) > E(; Y,) = u(Y,) for all p e [0, 1] =
X =Y.

Next set of weights allows to characterize third degree ISD. We consider
the set V’CV? of convex weights [see Mehran, 1976, Kakwani, 1980, Zoli,
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1999, and Chateauneuf et al. 2002] exhibiting zero left-hand side derivative v”
at the top. That is

V= {v € V?: v convex, v_(1) = 0}.

The bases for >,3 are given by the set B3 of all linear decreasing weighting
functions censored for values below 0, that is

2.t 2(h —
bs(p, h) = -h—i/ Iom(t)dt = (—hZ—p)i where h € (0, 1), ®)
P

and (h — p)4 := max{h — p, 0} (see Lemma A.3 in Appendix). Making use of
>, we obtain >3 and therefore adapting results by Zoli (1999) and Wang
and Young (1998) showing that >,3<>}=3 We can prove:

Proposition3.3. X >3 Y <= X 2x3 Y& X =37.

Straightforward readjustments of variables lead to a restatement of >3 in
terms of the stochastic order induced by the single parameter GG-SEFs E(2; X )
that is by those related to the Gini index (see also Zoli 1999, 2002). Application

of >,3 requires that

12(h —t 1

/ —(—5—)—+ - A@)dt =/ 2(1 —1t) - Ap(t)dt = 0 )
0 h 0

for all & € (0,1). That is recalling that the second part of (9) coincides with

2(2; Xp) — E@2; V) = p(Xn)1 — G(Xp)] — (¥l — G(Yn)] we get as in

Zoli (1999, 2002).

Remark 34. E(2; X,) > E(2;Y)) forall pe[0,1] <= X =Y.

The previous result points out that >z3 coincides with dominance for all
Gini based SEFs applied to any set of poorest p proportions of individuals.

For higher orders (discussed in Wang and Young, 1998 and Aaberge, 2004),
in analogy with what suggested for direct stochastic dominance [see Fishburn
and Willig, 1984], when n > 2 we have to consider the set

V= v eVl =yl e V)

obtained recursively starting from V2 .= {v : v > 0, v is non-increasing,
v(1) = 0} and derive the set of interest

1
Vo= {v e V" /0 v(t)dt = 1}
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which takes into account normalized weights . In general the bases B for >yn
can be obtained considering the set of weights

T L (1 o) am)
b,(p,h) = Iom@®de | ...d d
(p k”—l L /p] /pn—3 [O h] p2 pl (10)

pEs H - n—2
= = DIG = )] where h € (0, 1].

hn—l

The bases for n = 4 are given by the set of all decreasing quadratic weighting
functions censored for values below 0 and such that the lowest value is 0. For
n = 5 cubic functions with similar properties are considered, and so on for
higher orders.

By repeated application of integration by parts it can be shown that

N LN (R ) LI < (n—1(p—1t)"2

A (p)_/0 Ak £ dz_/o O L

which can be rewritten as
n—1 1
An(p)=(np_ 5 /0 Ay () — 1)(1 — 12, (12)
That is
n—1
A"(p) = (np_ i B -1X) - 80 -1:¥,)], (13)

note that when p = 1 we get as shown in Muliere and Scarsini (1990) ALY =
[Er -1 X)—-B@®-1Y)]/(n—1)!
Similarly applying >z» we obtain

_ _ n—2 1
L D[(h_l L T / (=11 —1)"2. Ay(t)dt > 0
0 h" .

for all & € (0,1), which shows that the functionals E(n — 1; Xp) for all
p € (0,1] can indeed be considered bases for n'*—degree ISD. All results
concerning stochastic orders and ISD for n > 1 can be summarized in the

following proposition.

Proposition34. X >n Y <= X >;m Y <= X &, Y.
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Focussing on >pn it is possible to restate the n'* —degree ISD in terms
of the stochastic order induced by S-Ginis of order n — 1 evaluated over all
distributions truncated at p. That is for n > 1 we have

Remark 3.5. Em—1;X,) > B(n — 15 Y}) forall pe[0,1]<= X =, Y.

Note the analogy with Foster and Shorrocks (1988) result on the relation-
ship between stochastic dominance and the stochastic order induced by the
Foster, Greer and Thorbecke (1984) [FGT] parametric family of additively de-
composable poverty measures. Stochastic dominance of order n turns out to
be equivalent to poverty dominance for the FGT poverty index of parameter n
evaluated for any poverty line within the income domain [see also Fishburn,
1976). Our result looks at the quantile space and instead of considering distribu-
tions censored at the poverty line focuses on their truncations at the p quantile,
moreover the relevant stochastic order turns out to be the one associated with

the S-Gini of order n — 1.

3.2. Threshold based weights

Next set of conditions involves weighting functions characterized by their
behavior conditional on a threshold level @ > 0 identifying a position in the
income ranking. We investigate reasonable assumptions on the shape of the
weighting functions that take explicitly into account information on a norma-
tively significant threshold level specified in the population space. We provide
novel characterization results of stochastic orders and associated dominance
conditions that are in between first and second ISD or depart from second ISD
without necessarily implying higher orders of ISD.

3.2.1 -One condition in between First and Second degree dominance

We start considering sets of non-negative weights where higher concern
is given to incomes ranked in positions below the threshold « > 0 than to
incomes of individuals ranked above o. We suppose that weights for positions
below « are larger than those for positions above o, but we do not assume
any further restriction on comparisons of weights located on the same side of
the threshold. That is we focus on the set

Vii={weV v(p)>vg) foral 0<p<a<g=l}
Deriving the bases B. for >y turns out to be slightly cumbersome, they are
identified by the set of weights v} (p, £, h,n) for n € NUO such that

1 » -
s " oo — To.)] ifn=0

V(b i=9 L ho+ > (Towy — Togy) | ifn=1 (14)
a+ ) (hi—t) =
i=1
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where 0 < £y < hp <a; and @ < €; <h; <1 forall i € {1,2;... ,n) with
£i > h;_; for all i € {2,...,n}. Thus
B, = {vi(p, £, h,n) for all n € NUOQ),

that is B! considers weights assigning positive value to any income ranked below
«, and once a positive weight is assigned to groups of individuals ranked above
o it requires that all individuals ranked below « receive the same weight as
those above «. As a result

Lemma 3.1. X gl Y &= X>,17.

Remark 3.6. Note that 8] C B' and B? C B!, thus
X>;1Y =4 X>BéY = X?-zY

In order to formalize the dominance conditions associated with > s} (and equiv-
alently also with >v§) we need to introduce the indicator function Iiapy<0)(p)
identifying all values of p associated with a non-positive sign of A(p) :
1 if A(p)<0
e ®={ 5 it ar0

In next proposition we will make use of the functions fa] Iia<oi(p)dp giving
the average of all negative values of A(p) for p above the threshold «. We
will also make explicit the difference between the generalized Lorenz curves of
the two distributions recalling that AGL(p) := GLx(p) — GLy(p) = A%*(p).
As proved in the Appendix:

Theorem 3.1. X 21 Y if and only if:

(1) A(p) =0forall0 < p < o and

@) — J; Ta<o(P)A(p)dp < AGL(a).

To summarize, condition (i) requires that for all positions below « distri-
bution X always rank dominates distribution ¥, while condition (ii) requires
that if distribution Y rank dominates distribution X for positions above o then
it should not be the case that the overall income advantages of ¥ above « are
larger than the overall advantages of X below «. Of course if X rank dominates
Y for all positions then dominance is obtained as argued in Remark 3.6.

The dominance condition turns out to be particularly interesting when dis-
tribution with equal means are compared. In this case dominance can be
obtained applying a sequence of quantile preserving spreads as in Mendelson
(1987), these are associated with transfers of income from individuals located
above « to individuals below «. Our result requires that distribution X rank
dominates distribution Y for all positions below « while ¥ rank dominates X
for positions above . Next corollary thus provides a new additional character-
ization of the dominance condition presented in Mendelson (1987).

(15)
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Corollary 3.1. If u(X) = u(Y), then X 21 Y if and only if:

() A(p) >0forall0<p <a,and
(i) A(p) <O0foralll > p > a.

3.2.2 -Conditions implied by Second degree dominance

Within the set of inequality averse evaluations it is possible to restrict the
set of admissible weighting functions imposing further restrictions on v € V2,
One may for instance restrict attention to weight profiles where individuals
above a given relative position @ > 0 are required to exhibit weights below the
average weight of societal incomes corresponding to 1. That is we can restrict

attention to the set
V. i={vE V2 :v(p) <1 for all p > a}.

The class of welfare orderings >, is consistent with the set of restrictions on
the distortion functions f derived in Gajdos (2004). For discrete distributions
Gajdos (2004) proves that the set V, of weighting functions is consistent with
the welfare improving (inequality reducing) effect, according to the class of
GG-SEFs, of transfers of incomes from an individual in position o € (0, 1)
uniformly spread across to all the other individuals in the distribution. Here
we supplement the result in Gajdos (2004) formalizing the class of stochastic
dominance conditions induced by >, .

The set of bases B, for the family V; are the weights v, (p, £, h, &) that
are conditional on the parameter @ € (0, 1] identifying a threshold and two
extreme points £ < & such that 1 > h>£>0, and £ < a:

[1—(h—20)]/¢ for pel0,f)
v, (p, £, h) = { 1 for p € [£,h) where £ <«a; £ <h. (16)
0 for p € [h, 1]
That is

v, (p, ¢, h):=[1—h] /L I+ Iony where £ <a; € < h.

Lemma 3.2. X 2807 Y &= X 214; Y.

Application of the set of weights B, leads to a result where comparisons
of convex combinations of incomplete means are required:

Theorem 3.2. Let o € (0, 1), X >~ Y if and only if:
(i) AGL(p) > Oforall p <a,and p =1, and

o~ . AGL . AGL
(11) m1n0<q<a {'—ELQ} + m1n1>pza {Téﬂ)} = 0.
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The partition of the population into two groups including individuals ranked
on both sides of the relative position o will allow to make between groups
comparisons and therefore will open the way to the possibility that improve-
ments within a group lower down in the income scale can compensate for not
necessarily inequality reducing changes in the situation of individuals belong-
ing to higher income group. Note that AGL(p)/p measures the improvement
in average income of the distributions truncated at quantile p. Condition (i)
requires that generalized Lorenz dominance is satisfied for all groups of poorer
individuals below the population threshold « and also requires that on aver-
age distribution X is not worse off than distribution Y. Condition (ii) can be

rewritten as

min

O<g<a T I>pra

{AGL(q)} i {AGL(I) ~AGL(p)  Ap }
q 1-p 1-p

where Aup = u(X) — u(Y) and the term within the brackets on the right
hand side is the difference between two components: it is a measure of the
improvement in mean income of the richer (1 — p) percentage of individuals
[AGL(1) — AGL(p)]/ (1 — p) compared to a reference improvement A /(1—
p) that could have been obtained if the entire difference in total income between
X and Y where distributed solely to the richer (1— p) percentage of individuals.
Condition (ii) thus requires that the minimum improvement, in moving from
Y to X, among all groups of poorer individuals below « is sufficiently large
to compensate for the maximal improvement between the groups of richer
individuals above o whose realization exceeds the potential per capita advantage
attainable sharing the surplus Au. In other words richer individuals above o
are allowed to improve their situation, in excess w.r.t. the advantage deriving
by the sharing of Au, provided that on average their exceeding improvement
is not larger than the minimal average improvement taking place in groups of
poor individuals below «.
When distributions have the same mean we obtain:

Corollary 3.2. Leta € (0, 1), if u(X) = n(Y), X >va— Y if and only if:

(1) AL(p) =0 forall p < a, and
(11) l'njnO<q<0z {A_l;}(q_)} > maxps p>o {_A_L(_I%:_?M} .

In this case since Au = 0 improvements of the situation of groups of
(I — p) richer individuals ranked above « is admissible only if on average
such improvements are not larger than those occurring to the groups of poor

individuals below «.

Remark 3.7. Note that B; C B> thus X =, ¥ — X >,- Y.
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Lorenz dominance clearly implies 2y since it requires that on average
the of groups of (1 — p) richer individuals experience a worsening of their

situation in moving from ¥ to X (i.e. AL(1) — AL(p) <0 for all p).
An alternative view of taking into account the informational content of

thresholds o within the set of inequality averse evaluations, may require that
the weights v € V? associated with all incomes ranked below the relative

position o are set above the overall population average weight corresponding
to 1. Thus we consider the class of weighting functions:

Vi={weV?:v(p)=1forall p<al.
The base B} for VI is given by the set of
vi(p, &, h) :=[1—h)/€ I+ ITon Where @ <h;€=<h.
Readjusting Lemma 3.2 simply adapting the constraints on the values of £ and
h it is immediate that
Lemma 3.3. X 25t Y <= X2+ Y.
Applying dominance for the base B we obtain:
Theorem 3.3. Leta € (0, 1), X >+ Y if and only if:
(1) AGL(p) > Oforall p> «, and
S GL ; AGL
(11) MmiNy > p>0 {A_p(p_)} ¥ minysg>a {—I—T@)} = 0.

The above result is a modification of Theorem 3.2 since it still involves
condition (ii) but combines it with the requirement of generalized Lorenz dom-

inance for all values above «.
Combining the restrictions in each class we obtain the base B/~ for

VNV, that are given by the set of weights
v/ (p, &, k) :=[1—h1/C Ipg+Tom where 0 <f<a<h<l

Applying the base B,/~ we obtain:
Corollary 3.3. Letx € (0, 1), X Zytavy Y if and only if:

(i) AGL(x) = 0, and

i > A . AGL
(11) MmiNy>p>0 {_Q;l;_(g)} Fa mingsg>a {'ﬁ@} 2 0.

While if we consider VUV, we have:

Corollary 3.4. Letx € (0, 1), X >vjuv; Yifandonly if X =, Y.
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Following Castagnoli and Muliere (1990) and Mosler and Muliere (1996,
1998) one could argue that it might be reasonable to assume that progressive
transfers induce a non-negative welfare effect but might exhibit a strictly positive
welfare effect if they take place between a donor located above position « €
(0,1) and a recipient located below . The class of weighting functions that
are consistent with this idea is denoted by V¥ where:

Vi={veV?:v(p) > v(g) for all p <« < g},
while the base Bj for V) is given by the weighting functions
Vo(p, &, o) :=[1—h1/€ Lo+ Loy where 0 <f<as<h<l.

Note however that co(V}) = V2 that is according to Remark 3.2 we have that
Zyy <—> 2,2 which implies that >,x<«— =, with no additional restrictions on

the stochastic order in moving from V? to V?.

4. CONCLUSIONS

Generalized Gini functionals are common in the literature on evaluation
of income distributions as well as many associated dominance conditions as
for instance the inverse stochastic dominance criteria. For a given set of dis-
tortion [weighting] functions we have identified the maximal set of distortion
[weighting] functions that is consistent with the stochastic order induced by the
former set according to the class of generalized Gini functionals. Moreover,
our methodology can be used to identify also bases of a stochastic order, that
is small sets of distortion [weighting] functions inducing a given order. Our re-
sults allow to focus attention on a small set of distortions [weights] in order to
assess the normative relevance of a given order. This is precisely what we have
done for the class of inverse stochastic dominance conditions. We have identi-
fied the relevant bases for each order of dominance and we have highlighted
the equivalence between them and the stochastic orders induced by single pa-
rameter Gini functionals specified for a given parameter value and applied over
distributions truncated at a given position in the income rank. Dominance for
all such stochastic orders associated with parameter value n — 1 and checked
irrespective of the truncation point is equivalent to inverse stochastic dominance
of order n.

If additional information on normatively relevant thresholds in the ranking
space is available it is then possible to identify bases that are consistent with
those associated with the various degree of inverse stochastic dominance but
exhibit different behavior whether applied above or below the threshold. Some
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stochastic orders implied by first and second order dominance have been in-
vestigated. Following similar lines of reasoning it is also possible to extend
the approach deriving threshold based dominance conditions implied by higher
orders of inverse stochastic dominance.

APPENDIX

If X is a random variable we call pseudoinverse of Fy the function defined,
for all p € (0,1), by

Fg' (p) =min{t eR: Fx (t) _<_p}.
Next proposition collects some known properties of pseudoinverses (see e.g.
Letta, 1993, and Denneberg, 1994).
Proposition A.1. Let X, X,,, Y be random variables.

1. Fy' is well defined, non-increasing and right-continuous.

2. Foralla,b € R and p € (0, 1), Fy(a) > p > Fx (b) if and only if a <
Fx'(p) <b.

3. F e Y as a random variable on (0, 1) with the Borel measure has decumulative
distribution function Fx.

4. Let g : R — R be a Borel function and assume g (X) is summable, then
/ g(X)dP = —/ngX =/ g (F; (t)) dt.
Q R 0

5. X, = X if and only ifﬁg} (p) converges to F;l (p) forall p € (0,1) at
which Fy' is continuous.

6. Fy > Fy ifandonlyifl:ﬂ)?1 = _Y_].

7. Ifa > 0 and b € R, then B, = aFg' +b.

8. If X and Y are comonotonic, ngy = Fl 4+ Fy
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Proof of Theorem 2.1. The proof follows Maccheroni (2004). By Eq. (1) it is
clear that

X>fY¢>/Xd(uoP)2/Yd(uoP), Yu € co (F).
Q Q

Assume by contradiction that co (F) is not the maximal set of distortions
representing >, then there exists a distortion g ¢ co (F) such that

X>;Y:>/9Xd(gop)z/yd(gop). (17)
Q

Let X be the set of all random variables taking values in [0, 1]. First

notice that for all X € X, [,Xd(foP) = [} f (ﬁx (z)) dt. Hence, >
can be regarded as a preorder on the family of the decumulative distribution
functions of all random variables in X, or — more precisely — on the set of I"
of their restrictions to [0, 1]. By the nonatomicity of P, I' is the set of all non-
increasing, right-continuous functions J : [0, 1] — [0, 1] such that J (1) = 0,
with the convention J (07) = 1.

For all X € X, we can extend F ¥ ! to the whole [0, 1] by setting 17"}; } 0 =

. . — __] _ . _ = .
min {t eR:Fx(t) < O} and Fy (1) =0. Given J = (Fx)p[o,u el’, by J

we mean Fy'. For all J € T, the following properties hold:

e J7'(p)=min{re[0,1]: J() < p}=min{r € [0,1]: J(r) < p < J(t7)},
s el
e (J—l)—l —— &
The vector space generated by I' is RBV; ([0, 11),(®) which is (isomorphic to)
the topological dual of C ([0, 1]), the duality being

(f, F) = — /M fdF.

Next we show that the cone H generated by co (F) is closed, convex,
does not contain g and 2(0) = 0 for all » € H. If au, Bw € H (with
a, B € Ry and u, w € co(F)) either « = B =0 and ou + Bw = 0 € H, or

oau + pw = (@ +B) (ﬁu - ﬁw) € H, hence H is convex. If au, € H

(with «, € Ry and u, € ¢o(F)) and a,u, = h, then o, = a,u, (1) - h(1);
Upln _h_

therefore, either 4 (1) = 0 and o,u, > 0 € H, or u, = o = € co (F)
and & € H, hence H is closed. If g € H, then g = au with @« € R, and

(6) RBV; denotes the set of all functions ¢ : [O_, 1} — R such that ¢ is of bounded variation, right
continuous, and ¢ (1) = 0.
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u € co(F), in particular 1 = g(1) = ¢-u(l) = o, and g € co(F), a
contradiction.

The set {h +a : h € H and o € R} is a convex cone too. Let £ denote its
closure, if g € K there exist sequences &, € H and o, € R s.t. h, +a, > g.
Hence h, (0) + «, — g (0), but A, (0) = g (0) = 0, consequently «, — 0, and
hy, = (h, +a,) —a, — g. So g € H = H, which is absurd. By the Separating
Hyperplane Theorem (see, e.g., Aliprantis and Border, 1999, Theorem 5.58)
there exists a nonzero function ¢ € RBV; ([0, 1]) such that

—/ gdp>0>— [ kdp, Vkek.
[0,1] [0,1]

Since the constant functions belong to K, then a¢ (07) = — [ ;;ad¢ < 0 for
all @ € R, and ¢ (07) = 0. Therefore there exist J;, /, € I" and y > 0 such
that ¢ = y (J1 — J2), so

——y/ gd (J1 — Jh) >Oz—y/ kd (J1 —Jy), Vkek.
[0,1] [0,1]

For i=1,2, set H; = J, ' €T, since F C K, we have — Jo.13 fdH'—H Y <
0 for all f € F, that is

1 1
[ ranear==[ famy'z- [ gam? = [ ranonn vre s
0 [0,1] [0,1] 0

and H2 2.7—' H]. But _f[O,l] gd (Hl—l — 2—]) - O, that iS folg(Hl ([)) dt >
I g (Hy (2)) dt, which is absurd. o

Proof of Corollary 2.1. By Theorem 2.1 if co (G) C co (F), then
X2 Yo X2 Y=2>X200Y € X 27,

for all X,Y € £}. Conversely, if X > ¥ = X >g Y and there exists
g € co(G)\co(F), by the separation argument used in the proof of Theo-
rem 2.1, there exist Xy, X, € £L such that X, > X; but [, X;d(go P) >
fq X2d (g o P). Therefore it cannot be X, >g X, which is absurd. O
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Proof of Proposition 2.1. First notice that co (V) Cco (V). Let vy,...,v, €V
and ag,...,q, >0 with > 7o; = 1, then

j JL i
. i ol G =S s h, Vp €0, 1] and
F5 s () /Ofljau ndt =Y aify () Vpel0.1] an
8 = fy o, =D 0ify €T0((f, v € V)N AC (0, 1),
: |

moreover, g’ (¢) = Y jov; (1 —1¢) and Yo (t) = g (1—1¢) € co (V). In
particular, V C co (V).
Then notice that Fawm =co{fy:veVHhNAC ([0, 1]), in fact

g€ Fs0, €8 =/Opf’(t)dt for some f eco({f, :veV})NAC(O0,1)])
S geco({f,:veVHNAC(O,1]).
If >5, is weaker than >z, then ¢o (Fy) C co (F) and
2 (Fw) N AC (10, 1]) € T (F) N AC (10, 11,
whence W C co (W) C co (V). Conversely, if W C ¢o (V), then

Fw € Foy =0 ({fo 1 v € VD NAC ([0, 1))

C

=co (Fy) N AC ([0, 1]) C ¢o (F),

and hence c¢o (Fy) C co (Fy), which in turn implies that >,, is weaker than
2y.
1. V C co(V) implies that >, is weaker than >5)- Conversely, >=,
is, by definition, ;;A(v) which, by Fooy € co(Fy), is weaker than
. Co - .
Zw(Fy) =2 Fy =2V We conclude that Z&any==2v. Moreover, if >, coin-
cides with >y, then >,y is weaker than >, and W C ¢o (V).
2. >y and >y coincide if and only if 25 1 weaker than >,y so that

co(V) S coW), and >z 4y, is weaker than >y, so that co(W) C co(V).
O

Proof of Corollary 2.2. We first show that co“1 (B) C o (B). If v € co“! (B),
then there exists a sequence v, in co (B) that converges to v in £; ([0, 1]).

Therefore
sup / v" (¢) dt —/v(t)dt, — 0
A A

A Borel
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since £; ([0, 1]) is norm isometric to the space of all signed measures which
are absolutely continuous w.r.t. the Lebesgue measure, endowed with the total
variation norm, which — in turn — is equivalent to the supnorm (on that space,
see, e.g. Dunford and Schwartz, 1958). In particular fll_p v" (¢) dt uniformly
converges to fll_p v (¢) dt therefore f, belongs to the closure of co (Fp).
Since B C V, then >p is weaker than >,. Since for every v € V there
exists a sequence v, in co (B) that converges to v in £; ([0, 1]), then v €
¢o“1 (B) C co (B). Thus V C co (B) and >y is weaker than >p. O

LemmaAl X 2,1 Y <= X >, Y.
Proof. For any v € V! we have that v € £7 ([0, 1]) and [ v(z)dt = 1. Let

1 1 2 j j+1 [2"——1 2”)}
pi=a [0 |9l f fana § | 2 § s §i | ===y 1
& {[ 2n> [Zn 2n> {Zn 2n ) 2n 2n ( 8)
for all n € N (set of natural numbers) denote a sequence of partitions of [0, 1]

into 2" intervals of equal length. Denote by v" = E(v|m,) the conditional
expectation of v given partition m,. That is, given

Jj+1

. an  2F . . TR Rl
V() =2 /'zln‘ v(t)dt =2"-c} if p e [5, > ) (19)
we have that
. . M1
vt =2 -ijo c; - 1[54..-’1;71)' (20)
Recalling that I ; j11. = I j+1, — I ;. we have that 2" - I ; ;41 belongs
[3ms5n [0, 57-) [0,37) L35

to B! according to the definition in (5). Therefore v” is a convex combination
of elements in B'. It is well known (see Royden 1987, p.129, Proposition
9) that for any normalized v € V! the constructed v" in (19) [and therefore
also in (20)] converges to v, which proves that V! C o (B'). It follows that
co (V') C co (B') which together with the fact that B' € V', according to
- Remark 3.2, leads to the required result. O

LemmaA2. X 2o Y <= X 2 Y.
Proof. For any v € V? then v € £{ ([0, 1), fol v(t)dt = 1, and v is non-

increasing. Denote by v" = E(v|m,) the conditional expectation of v given
2% 1

partition 7, as in (18). That is, given (19) we have v" =2"-3 7 ;" ¢} 1[2%,%1)
i3l

where ¢} = [ Jf" v(t)dt and v" is non-increasing since ¢; > cj,,. Making
2”

use of Abel’s lemma it follows that v" =2"- Z?ial ¢j = Ciy1) L i1, where
> o
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¢y := 0. Note that letting w = ¢j—cj,; > 0 we have that v" = 2}251 (J+1)-

O o B8 2 G -
wi - [ I[O, %_1)] where g ][o, J;Tl) are elements of B* as in (6), while

their weights. (j + 1) - w; > 0 sum to 1 given that Zfigl G+1- w! =

n_ n_ n_ 7 1 .
Z?:()I Ziz:jl wi] = JLOI (CJ” = cgn) = 12-=01c;’ = Jo v(@)dt = 1. Thus v" is

a convex combination of elements in B2, The proof is completed replicating
the same arguments applied in the final part of the proof of Lemma A.1 in
order to show that ¢o (V2) C ¢o (5?) . O
LemmaA3. X >3Y < X >3 Y.
Proof. Note that v € V3 if and only if v € V2 := {v: v > 0, v is non-increasing,
v(l) =0}, —v_ € V2 and f; v(t)dr = 1. Let b}_(p, h) denote the left-hand
side partial derivative of bs(p, k) in (8) w.rt. p, thus —b4_(p, h) := 1o h).-
Take as primitive concept the function u := —v’ where by construction

taking u € £1([0, 1]) and following the same procedure applied in the proof of
Lemma A.2 it follows that

2n_1 2%—-1 .. 2 2
n n n — (J + 1) n 2'1
u :2'1.;061"1[2%"2—%_;0—*2”“ Wy 2(j+1) -1[0’%) (21)

e L
where ¢ = 5%2" v(t)dt — szé vdt =v(j/2") —v(( +1)/2") and w! :=

¢;—cj1y = 0. Note that the term within square brackets in (21) is -b;_(p, j2+71)_

Therefore u" is a linear positive combination of elements in 53. As shown in

Lemma A.2 we have that u" converges to u := —v’ in £;. It can be shown
that if u” — u in £; then v"(p) = [, u"(t)dt — [} u(t)dt = v(p) uniformly

w.rt. p. Therefore v* — v in £,. In order to prove he result we need to show
that if »" is a linear positive combination of elements in B° then V? C ¢o(5?).
Note that v” — v € V? and that v belongs to the closure of the cone generated
by co(B°). It can be shown that normalization of v and elements of B3 implies

that v € co(B°). 0
LemmaAd4. X >n Y &< X > Y.

The result can be completed by induction following the proof of Lemma
A.3 and recalling the following facts:

(i) if —v” € V*~1 then it is possible to construct an analogous of (21) obtained
from —v’ which is a positive linear combination of elements in B,
(i) £, convergence of derivatives implies £; convergence of primitives,
(iii) normalized elements of the closure of the cone generated by co(B") belong
to co(B"). O
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Proof of Lemma 3.1. Consider a partition of [0, 1] into two intervals identified
by a € (0,1). Making use of v;(p,ﬁ,h, 0) in (14) following the proof of
Lemma A.1 we obtain positive linear transformations of any v € Vlin (0, ).
Note that by construction any step function belonging to V, with constant
values in (0, @) can be constructed as a positive linear combination of functions
vl(p,£,h,n) for n > 1 belonging to B,. By Lemma A.1 we get that the
sequence of these step functions converges to functions in V! that are constant
in (0, ). Combining these functions with those derived making use of the
bases v‘i (p, £,h,0) we obtain the entire class Volt. O

Proof of Theorem 3.1. Consider Lemma 3.1 where >,1&>p51. Applying
>zl We obtain:

1
/ vL(p, £,h,n) - A(p)dp > 0 for all n € NUO. 2)
0

Letting n = 0, we get [AGL(ho) — AGL(£g)] /(ho — £o) > 0 for all 0 < £ <
ho < «; that is denoting by AGL(ho) — AGL({y) = fz(')o A(t)dt we can rewrite

1 ho
/ A(t)dt >0 for all 0 < £y < hy < a. (23)
hO - 2O £y

Thus, letting ho — £, we obtain A(p) >0 for all 0 < p < a.
Consider a fixed n € N then (2.1) is satisfied if and only if
AGL@) + ¥ [AGL(h;) — AGL(£)] 2 0 24)

for all @ < £ < h; < 1 for all i € {1,2,...,n} with £ > h;_; for all

i E{2:0an s 1)

Since A(p) >0 for all 0 < p < o then AGL(a) >0, let n =1, hy =1,
and ¢; = «, necessarily it is required that AGL(1) > 0.

Condition (24) can also be rewritten as:

hi
AGL(x) > —min {z;;l / A(t)dt} (25)
neN ¢

with previously specified restrictions for ¢; and h;. Consider the indicator
function Ija<g(p) as in (15), then the right hand side of (25) coincides with

— fal Iia<01(p)A(p)dp. Thus the required condition is

1
AGL(@) + / Iin<or(p)A(p)dp = 0.

Otherwise it will be always possible to find a sequence of ¢; and h; such that
(24) is violated. , O
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Proof of Corollary 3.1. If 4(X) = u(Y), then AGL(1) =0, thus [! A(p)dp =
—AGL(x) <0.
Substituting into condition (ii) in Theorem 3.1 we get fal Iia<o)(p)A(p)dp >

/. al A(p)dp where both sides are non-positive, moreover by construction fal Iia<o
Adp < fal Adp. These conditions are only satisfied if fal Iia<01(p)A(p)dp =
fal A(p)dp, therefore it follows that A(p) <O for all 1 > p > q. O

Proof of Lemma 3.2. Consider a partition of [0, 1] into two intervals identified
by @ € (0, 1) . According to v, (p, ¢, h) := [1 — h] /€ Io,0)+ 110 5y Where £ < «
and £ < h, letting h — ¢, following the proof of Lemma A.2, it is possible
to obtain positive linear transformations of any v € V? in (0, @) taking value
0 for all elements in («, 1). Letting £ = o and considering @ < k& we obtain
elements of V> where by construction the value of v never exceed 1 in (o, 1)
and is at least 1 in (0, o) . Combining these separate results we derive Ve ©

Proof of Theorem 3.2. Making use of Lemma 3.2 we consider directly welfare
dominance according to (16) which requires that:

1
/ vz (p, £, 1) - A(p)dp > O for all £ < a; £ < h for a given o > 0.
0

Thus
¢ h
[1-(h—-20)]/¢ -/0 A(p)dp—f—/!Z A(p)dp >0 for all £ <«; £ <h,
that is
[1—-(G—-0]/¢-AGL(¢)+ AGL(h) — AGL(®) >0 for all £ <a; £ <h.

Rearranging we obtain

[1—h]-AGL(€)+£€- AGL(h) >0 for all £ < a; £ < h. (26)
For a fixed value of £ letting & = £ we get

AGL(£) > 0 for all £ < a. (27)

If we consider 2 > £ we have that: (i) if # < o condition (27) is sufficient to
guarantee that (26) is satisfied, while (i) if # > « then condition

AGL(Z AGL(h
K()+[1 2])20f0ra11€<a;a5h (28)
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has to hold if # < 1. While if # = 1 we have AGL(1) > 0. For a fixed value
of h > a, applying (27) to the first term of (28) a necessary condition for
dominance for all 7 > « is that

A
min { Gj(ﬂ)} + AlGL;h) >0 for all @ < h.

O<i<a

Fixing o and taking all & > «, then the previous condition requires that

. [AGL(®®) . [AGL(h)
g~ ) =0 e

O

Proof of Theorem 3.3. We make use of the fact that X >+ Y &= X 24+ Y
which can be proven readjusting Lemma 3.2. Welfare dominance according to
vl (p, £, h) in B} requires that

[1—h]- AGL(£)+£-AGL(h) >0 for all @ <h; £ <h. (30)
For a fixed value of h > « letting & = £ we get
AGL(h) >0 for all & > a. 3D

If we consider & > £ we have that: (i) if £ > « condition (31) is sufficient to
guarantee that (30) is satisfied, while (ii) if £ < « then condition

AGL(®) , AGL(®)

; =, >Q0forall L <a; a<h (32)

has to hold. For a fixed value of £ < a, applying (31) to the second term of
(32) a necessary condition for dominance for all £ < « is that

AGL(Z) ) {AGL(h)
+ lg}llga

}20f0rall£<a.
7 1—~h

that is we have (29). O
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