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Utility and Means in the 1930s

Pietro Muliere and Giovanni Parmigiani

Abstract. This paper reviews the early axiomatic treatments of quasi-
linear means developed in the late 1920s and the 1930s. These years
mark the beginning of both axiomatic and subjectivist probability theory
as we know them today. At the same time, Kolmogorov, de Finetti and,
in a sense, Ramsey took part in a perhaps lesser known debate concerning
the notions of mean and certainty equivalent. The results they developed
offer interesting perspectives on computing data summaries. They also
anticipate key ideas in current normative theories of rational decision
making.

This paper includes an extended and self-contained introduction dis-
cussing the main concepts in an informal way. The remainder focusses
primarily on two early characterizations of quasi-linear means: the Na-
gumo-Kolmogorov theorem and de Finetti’s extension of it. These results
are then related to Ramsey’s expected utility theory, to von Neumann
and Morgenstern’s and to results on weighted means.

Key words and phrases: Quasi-linear means, certainty equivalent, utility,

subjective probability.

1. INTRODUCTION

Finding the best way of computing a “mean” of n
quantities is a time-honored problem in statistics. In
this paper we review approaches developed during the
late 1920s and the 1930s. Our goal is twofold: to draw
attention to some relatively little-known perspectives
and results on computing data summaries and to high-
light the similarities between some of the key results
in normative theories of means and expected utility
theory.

Means and Decisions under Uncertainty. Rational
decision making under uncertainty is concerned with
choosing among actions whose consequences cannot
be completely anticipated. Typically, each action may
result in one of many outcomes. The expected utility
principle says that it is rational to choose among ac-
tions as if there were real-valued utilities and probabili-
ties attached to each outcome and as if outcomes were
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ranked based on their expected utility score. Probabili-
ties are used as weights in the expectation.

More specifically, some of the fundamental results
in expected utility theory (Ramsey, 1926; von Neu-
mann and Morgenstern, 1944; Savage 1954) deal with
finding sensible rationality requirements on prefer-
ences among actions that are satisfied if and only if
one makes choices based on the expected utility score.
For a survey of these results, including extensions and
critiques, see Fishburn (1981).

The expected utility score attached to an action
can be considered as a real-valued summary of the
outcomes that may result from the action. In this sense
it is a type of mean. From this point of view, normative
theories of decision making are close to the theories
that aim at dictating what is the most appropriate
way of computing a mean. This similarity is a running
theme throughout the paper. We use it to reinterpret
some older results from the perspective of current
utility theory.

Moral Expectation. The relationship between means
and rational decision making has been recognized for
a long time. The notion that mathematical expectation
should guide rational choice under uncertainty was for-
mulated and discussed as early as the seventeenth
century. An important problem was finding what
would now be called a certainty equivalent, that is, a
fixed amount that one is willing to trade against an
uncertain prospect, as when paying an insurance pre-
mium. Huygens (1657) is one of the early authors who
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used mathematical expectation to consider the fair
price of a lottery.

Daniel Bernoulli (1738) is generally credited for hav-
ing been the first to critically examine Huygens’ tenet.
His argument is best understood in connection with
the notorious St. Petersburg game. The game is as
follows: The house flips a coin until the first head
appears, and then pays 2° coins, where i is the number
of flips. What is the fair price of this game? The series
defining the expected value diverges. If expectation
determines the fair price, no price is too small. Ber-
noulli suggested that one should not act on the basis
of the expected reward, but on a different kind of
expectation, which he called moral expectation. In par-
ticular, he found it more reasonable to assume that
the value of monetary returns depends only on the
percentage increase rather than the absolute increase.
This led him to compute the moral value of the game
as the expected logarithm of the monetary returns,
which is finite.

The debate on moral expectation was important
throughout the eighteenth century [for a review of
the role of the St. Petersburg game in the history of
probability see Jorland (1987)]. Laplace dedicated to
it an entire chapter of his celebrated treatise (1812).
Interestingly, Laplace emphasized that the appropri-
ateness of the use of moral expectation relies on individ-
ual preferences for relative rather than absolute gains:

[With D. Bernoulli], the concept of moral expecta-
tion was no longer a substitute but a complement
to the concept of mathematical expectation, their
difference stemming from the distinction between
the absolute and the relative values of goods. The
former being independent of, the latter increasing
with the needs and desires for these goods. (1812,
pp. 189-190; translation by G. Jorland, 1987)

It seems fair to say that choosing the appropriate type
of expectation of an uncertain monetary payoff was
seen by Laplace as the core of what is today identified
as rational decision making.

After Laplace, this fertile point of view lost promi-
nence in the statistical literature for about a century.
During this time scholars in mathematics, statistics
and actuarial sciences studied the problem of means
and certainty equivalents in depth and devised a range
of ways to determine means. However, research often
proceeded by proposing a mean, or a class of means,
and then investigating its formal properties. At the
beginning of the 1920s, the literature on means dis-
played a diverse collection of functional forms, tailored
to the needs of specific contexts and disciplines.

A Formula of Bonferroni. The late 1920s and the
1930s mark a change in the understanding of the con-
cept of mean and a return to comprehensive normative
ideas. This trend can be noticed in several parts of the

scientific community, including mathematics (func-
tional equations, inequalities), actuarial sciences, sta-
tistics, economics, philosophy and probability. Partly,
but not solely, for expository purposes, we identify the
change point with the work of Bonferroni (1924, 1927,
1928). One important aspect of Bonferroni’'s many con-
tributions to the theory of means was to propose a
unifying formula for the calculation of a number of
different means from various application fields. In a
1924 article he writes:

The most important means used in mathematical
and statistical applications consist of determin-
ing the number M that relative to the quantities
x1, . . . x, with weights Py, . . . P,, is in the following
relation with respect to a function y:

Piy(x1) + - -+ + Poyl(x,)
Pi+..--+P, ’

I will take x, . . . x. to be distinct and the weights
to be positive. (1924, p. 103; our translation: we
modified the notation for consistency with similar
expressions elsewhere in this paper)

(1) w(M) =

Here y is a continuous and strictly increasing func-
tion. Various choices of v yield commonly used means:
w(x) = x gives the arithmetic mean, y(x) = 1/x, x > 0
the harmonic mean, y(x) = x* the power mean (for
k # 0 and x in some real interval I where v is strictly
monotone), y(x) = log x, x > 0 the geometric mean,
w(x) = exp{x} the exponential mean and so forth.

To illustrate the type of problem behind the develop-
ment of this formalism, let us consider one of the
standard motivating examples (Bonferroni 1924, 1927;
de Finetti 1931a). The problem is from actuarial sci-
ences. Consider a group of individuals of which P; have
age x1, P; have age x, ..., P, have age x,. From the
point of view of an insurance company offering life
insurance, an interesting way to determine the mean
age M of the group is so that “the probability of
complete survival of the group after a number 4 of

" years is the same as that of a group of P, + --- +

P, = N individuals of equal age M” (Bonferroni, 1924).
If the individuals share the same survival law S, and
deaths are independent, such M satisfies the relation-
ship

<S(M + h))N _ <S<x1 + h))”l . x <S(xn + h))P"

S(M) S(x1) S(x,)
which is of the form (1) with w(x) = log S(x + &) —
log Six).

Bonferroni’s general expression (1) was included in
the influential text of Darmois (1927) as well as in
Bonferroni’'s own 1928 text. Various authors began
working on characterizations of (1), that is, on finding
a set of desirable properties of means that would be
satisfied if and only if a mean of the form (1) is used.
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Nagumo (1930) and Kolmogorov (1930), independently,
characterized (1) (for P; = 1) in terms of four require-
ments:

1. continuity and strict monotonicity of the mean
in the x/'s;

2. reflexivity (when all the x;’s are equal to the same
value, that value is the mean);

3. symmetry, that is invariance to labeling of the
x;'s; and

4. associativity (invariance of the overall mean to
the replacement of a subset of the values with
their partial mean).

This characterization, together with some further de-
velopments, is presented in more detail in Section 2.

Means with an End. A different and, in a way,
complementary approach stemmed from the problem-
driven nature of Bonferroni’s solution. Although antici-
pated by Del Vecchio (1910), this approach is usually
associated with Chisini, who made it explicit in two
papers (1929, 1930). Quoting Chisini (1929):

The search for a mean has the purpose of simpli-
fying a given question, by substituting to many
values a single summary value, and leaving the
overall picture of the problem under consideration
unchanged. |. . . .] One should not be thinking about
the mean of two or more values, but only about
the mean of those values with reference to the
evaluation of a quantity that depends on them.
(p. 107, our translation)

In Chisini’s own example, when computing the mean
of two speeds, one can be interested in (say) the total
traveling time, leading to the harmonic mean, or the
total fuel consumption, leading to an expression de-
pending, in Chisini’s article, on a deterministic relation-
ship between speed and fuel consumption.

In the actuarial example discussed earlier, an alterna-
tive way of calculating the mean could be motivated
by leaving unaltered the probability of extinction of
the group. This would lead to the expression

(1 _SIM + h))N
S(1)

_ S(x: + h))P’ ( S(x. + A )>""
={1-—") X... 1] -2 TR
( Ster) X Sten)

This, incidentally, is still of the form (1) with w(x) =
log{S(x) — S(x + h)] — log S(x). Means calculated based
on Chisini’s principle are more general than (1), as we
see later. .

Chisini’s proposal was formally developed and gener-
alized by de Finetti (1931a), who later termed it func-
tional. De Finetti regarded this approach as the
appropriate way for a subject to determine the cer-
tainty equivalent of a distribution function. In this

’

framework, he reinterpreted the axioms of Nagumo
and Kolmogorov as natural requirements for such
choice. He also extended the characterization theorem
to more general spaces of distribution functions. The
functional approach is presented in Section 3.

Means and Utility. In current decision-theoretic
terms, determining the certainty equivalent of a distri-
bution of uncertain gains according to (1) is formally
equivalent to computing an expected utility score. The
function y plays the role of utility. De Finetti com-
mented on this after the early developments of utility
theory (de Finetti 1952,1964). In current terms, his
point of view is that the Nagumo-Kolmogorov charac-
terization of means of the form (1) amounts to the reduc-
tion of the expected utility principle to more basic
axioms about the comparison of externally given prob-
ability distributions.

It is interesting to compare this later line of thinking
to the treatment of subjective probability that de Fi-
netti was developing in the early 1930s (1931b, 1937).
There, subjective probability is derived on the basis of
an agent’s fair betting odds for events. Determining
the fair betting odds for an event means declaring a
fixed price at which the agent is willing to buy or sell
a ticket giving a gain of S if the event occurs and a
gain of 0 otherwise. Again the fundamental notion is
that of certainty equivalent. However, in the problem
of means, the probability distribution is fixed, and the
existence of a well-behaved y (that can be thought of
as a utility) is derived from the axioms. In the founda-
tion of subjective probability, the utility function for
money is fixed at the outset (it is actually linear), and
the fact that fair betting odds behave like probabilities
is derived from the coherence requirement.

A different approach, based on the joint derivation
of probability and utility from the same set of prefer-
ences, was at that time being developed by Ramsey
(1926). In the fundamental paper Truth and Probabil-
ity, written in 1926 and published posthumously in
1931, Ramsey writes:

The old-established way of measuring a person’s
belief is to propose a bet, and see what are the
lowest odds that he will accept. This method I
regard as fundamentally sound, but it suffers from
being insufficiently general and from being neces-
sarily inexact. It is inexact, partly because of the
diminishing return of money, partly because the
person may have a special eagerness or reluctance
to bet. . . . In order therefore to construct a theory
of quantities of belief which shall be both more
general and more exact, I propose we take as a
basis ... the theory that we act in the way we
think more likely to realize the objects of our
desires. (pp. 172-173)

He then moves to define degrees of belief based on the
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maximization of expected utility: in particular, he first
finds an event with subjective probability of 1/2, then
uses this to determine a real-valued utility of outcomes,
and finally uses the constructed utility function to
measure subjective probability. Interestingly, the sec-
ond step contains (at least formally) a characterization
of a special case of Bonferroni’s equation (1), as we
argue in Section 4.

After Ramsey, several proposals have been put for-
ward to reduce the expected utility principle to a more
compelling set of axioms about primitive notions such
as preferences among acts. Most influential is the work
of von Neumann and Morgenstern (1944). The connec-
tion between the axiomatic treatment of utility and
the choice of a mean was acknowledged by von Neu-
mann and Morgenstern (1944), who wrote:

We are entitled to use the unmodified “mathemati-
cal expectation” since we are satisfied with the
simplified concept of utility, . . . . This excludes in
particular all those more elaborate concepts of
“expectation” which are really attempts at improv-
ing that naive concept of utility (e.g., D. Bernoulli’s
“moral expectation” in the “St. Petersburg Para-
dox”). (p. 83)

In spite of the different context and structural assump-
tions, the axioms of the Nagumo-Kolmogorov char-
acterization and the axioms of von Neumann and
Morgenstern offer striking similarities. Of special im-
portance is the parallel between the associativity condi-
tion (substituting observations with their partial mean
has no effect on the global mean) and the independence
condition (mixing with the same weight an option to
two other options will not change the preferences). The
latter was not stated in these terms by von Neumann
and Morgenstern, but has been at the center of the
debate on axiomatizations since not long afterwards.
See also Fishburn and Wakker (1993) on the history of
the independence condition in axiomatic utility theory.

Some of the criticisms against expected utility as a
principle of choice, and in particular against indepen-
-dence as a tenable rationality requirement can be un-
derstood within the framework of a more general
version of quasi-linear means, known as means with
weight functions. This notion was anticipated by Gini
(1938), and we give a brief account of it in Section 5.

This closes our review. We do not survey all the
relevant interpretations and applications of means,
even within the specific time period considered. Also
we have strongly emphasized the aspects of the theory
of means that are closer to current ideas in decision
theory, perhaps at the expense of some of the historical
context. Our review is therefore both incomplete and
biased: it is a search for some little-known roots of
ideas that we now use in decision making.

2. THE AXIOMATIZATION OF QUASI-LINEAR MEANS

A mean is a function M: R = R. In this section we
introduce quasi-linear means and present the Nagumo-
Kolmogorov characterization result. To set the stage
we begin with some early characterization results about
the arithmetic mean.

2.1 Early Characterizations of the Arithmetic Mean

To our knowledge, the earliest attempt to motivate
the use of the arithmetic mean based on a set of
desirable requirements on the function M is Schiapa-
relli’s (1868, 1875). In particular Schiapparelli charac-
terized the arithmetic mean by the following set of

basic properties. Let (x1, . .., x,) € R™

Translativity: M(x; + ¢, ..., x, +¢) =
M(xy, ..., x:) + ¢ ceR;

Homogeneity: M(cxy, . .., cx,) =
ceMi(xy, ..., xn), ¢ > 0;

Symmetry: M(xy, ..., x.) = Mlxy, ..., Xiy)
where iy, . . . i, is any permutation
of1,...,n;

Continuity and differentiability: M has every-
where one-valued and continuous partial
derivatives dM/dx;, i = 1, ..., n.

An alternative set of axioms was proposed by Schim-
mack (1909), who replaced the continuity and differ-
entiability conditions with the simpler requirement
that substituting all but one quantity by their partial
mean does not change the final result. That is

Mypilxr . ooy Xnt1) = Mpsalx, ... ) Xy Xnt1),

where x = M,(x1, ... ,Xxn).

Schimmack’s formulation is more easily justified and
has the feature that the axioms are independent (Bee-
tle, 1915).

Scholars interested in functional equations carried
out similar investigations. For example, Suto (1914)
postulated symmetry and

Reflexivity: M(x, ..., x) = x,
together with the requirement that
Mx,+y1, .. %+ Yn) — Mixy, . .. s Xn)

depends on the values of y, ..., ¥y, only.

Alternative functional equations, used along with re-
flexivity and symmetry, were proposed by Schweitzer
(1915-1916), Huntington (1927), Narumi (1929), Teo-
doriu (1931), Matsumara (1933) and Nakahara (1936).

2.2 The Nagumo-Kolmogorov Characterization

Let us now reconsider Bonferroni’s equation (1) and
write it as

(2) Mixy, ..., x) =y ! <2pi|//(xi)>,
i=1
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where y is a continuous and strictly increasing function
and X=; p; = 1. Following Aczél (1966) we term quasi-
linear the means of the form (2). If the weights p; are
all equal, the mean is said to be symmetric quasi-linear.

A fundamental characterization of quasi-linear means
was given, independently, by Kolmogorov (1930) and
Nagumo (1930, 1931), in the symmetric case. We give
the characterizing properties of M following Kolmo-
gorov:

K1. Continuity and strict monotonicity in all coordi-
nates;
K2. Symmetry;
K3. Reflexivity;
K4. Associativity:
Mxy,...,x,)=Mix,...,x Xp+1y. . ., Xa),
where x = M(x1,...,xx)and1<k<n —1,n>1.

Associativity requires that replacing a subset of the
observations with their partial mean does not change
the overall mean. This condition is foreshadowed in
Schimmack (1909) and Bemporad (1926).

THEOREM 1 (Nagumo-Kolmogorov). Let I C R be a
closed and bounded interval and M: Uj;-; I" = R.
Conditions K1-K4 hold if and only if there exists a
function y, strictly monotonic and continuous, such
that

(3) Mixy, . ..,x:) = V/'l(,l—l > l//(x,-)>-
i=1

A characterization of (3) was given by Aczél (1948)
replacing associativity conditions with

Bi-symmetry:
The value of M (M (211, . . ., X1)y .+« - »
M (%, . .., %)) is unaltered

whenever x;, is switched with x;.

Further, relaxing symmetry, Aczél obtained a charac-
terization of the general form (2). See also Aczél (1966)
and Aczél and Dhombres (1989).

3. THE FUNCTIONAL APPROACH

3.1 Functional Means

As discussed in the introduction, the functional ap-
proach to computing a mean is based on explicitly
considering the problem that the mean must help solve.
In particular, one must specify one quantity of particu-
lar relevance, like the probability of complete survival
in Bonferroni’s actuarial example, or the total traveling
time in Chisini’s example quoted in the introduction.
This feature is expressed by a real-valued function
flx1, ..., x,) on I". In Bonferroni’s example we would
have

St th) o o St h)

ﬂxl, .« e ,xn) = —S(xT_ S(x,,)

Define g(x) = flx, ...
I, the mean of xi, ...
equation g(x) = f(x, . .

, x), x € I; if g is invertible in
, X, is the solution m of the
., X,) in x, that is,

(4) m=gloflxs,...,x).

Different choices of f will lead to different means. For
this reason, this approach has also been termed subjec-
tive (Martinotti, 1941) and relative (Martinotti, 1931;
Boldrini, 1942).

Means derived within the functional approach are
reflexive. This follows directly from the definition, but
is not taken as a requirement or a defining feature.
None of the other properties discussed in Section 2 is
guaranteed to hold for functional means. Interestingly,
a functional mean does not necessarily satisfy

Internality: min; x; < M(xy, ..., x,) < max; x;,

which was considered an essential part of the definition
of mean since Cauchy (1821). For an actuarial example
of a functional mean that is not internal see Bonferroni
(1937). The generality of the definition of f, and in
particular the violation of internality, drew criticisms
in the years that followed (Martinotti, 1931, 1939,
1941; Gini, 1938). As a reaction to the functional ap-
proach, extensive efforts were put into developing gen-
eral formulae to encompass a large number of means.
The most ambitious of these attempts, rejecting both
the axiomatic and the functional approach, is Gini's
(1938), discussed in Section 5.

Dodd (1934) systematically reviewed the properties
of means, identifying sets of independent properties.
In particular he showed that internality, uniqueness,
homogeneity, translativity and symmetry are indepen-
dent.

3.2 de Finetti’'s Characterization

The subjectivist nature of the functional approach
appealed to de Finetti (1931a). Later (de Finetti, 1964),
he also suggested it as the appropriate way of choosing

_ the certainty equivalent of an uncertain prospect in

rational decision making. From this perspective he
reconsidered the axioms of the Nagumo-Kolmogorov
result, interpreting them as sensible requirements for
decision in the subjectivist perspective. We discuss
this further in Section 4.

In addition, de Finetti (1931a) extended the charac-
terization from simple distributions to distributions
with compact support. Consider a real-valued random
variable X, with given cumulative distribution function
® and let F be a real-valued functional on the space
of distribution functions, generalizing the function f
considered by Chisini. Let I,,(x) be the indicator of the
set [m, ). If there exists a unique real number m
solving

(5) F(®@) = Fn),
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m is called the “mean of @ for the evaluation of F.” In
other words, the mean is chosen so that one is indiffer-
ent between the given cumulative distribution and a
distribution concentrating all of its mass on the mean.
We denote means obtained from (5) by My(®). Like the
means defined in (4), M5 is reflexive by definition, that
is, Ms(I,,) = m irrespective of F.

Considering Bonferroni’'s actuarial example again,
let @ be the cumulative distribution of age in the group
of individuals considered, and N the total number of
individuals. Then

(D) = exp {N fl logﬂ%(;:)—h) dQ(x)}.

To extend the Nagumo-Kolmogorov result to this
more general context, de Finetti uses the two proper-
ties of monotonicity and associativity. Let ®; denote
the space of probability distributions with mass con-
centrated in some closed interval I € R.

D1: Strict monotonicity: Let @, ®; be in ®@;; if @1(x)
< ®y(x) for every x (with strict inequality for at
least one x) then Mg(®;) > Mg(®D,).

According to this requirement, an individual will deter-
mine certainty equivalents preserving stochastic domi-
nance. Monotonicity, together with definition (5),
implies internality.

Consider a distribution @ that results from a convex
combination of two distributions ®; and ®; each
amounting to the fractions A; and A; (4; + A, = 1).
Formally ® = A,®; + A.®.. The property of associativ-
ity requires that the mean of ® is unchanged if one of
the two component distributions is replaced by another
one with the same mean. Formally:

D2: Associativity: if ®; and ®, in ®; are such that
M(®,) = Ms(®), then for every ®; € ®; and
A e (0,1), Ms(A®; + (1 — A)®;3) = Ms(Ad; +
1 — A)®3).

In addition to the intended descriptive interpreta-
tion, associativity can be understood as a restriction
on indifference relations between uncertain prospects:
Indifference between two uncertain prospects is pre-
served if both are mixed, in the same proportion, with
a third prospect. We return to discussion of associativ-
ity in relation to de Finetti’s “dutch book” argument in
subsection 4.2 and to von Neumann and Morgenstern
axioms in subsection 4.3.

In de Finetti’s work, the characterization of quasi-
linear means takes the following form.

TueoreMm 2 (de Finetti). Let I be a closed and
bounded interval. Ms, defined in (5), satisfies D1 and
D2 if and only if there exists a function y, continuous
and strictly monotone, such that for every @ € ®y,

©) My(®) = v/‘1< / v/(x)d@(x)),
I

where y is unique up to a positive affine transforma-
tion.

De Finetti’s proof is sketchy. For a rigorous treat-
ment see Regazzini (1987). In the case of compact
support, the extension to distributions that are not
simple is granted by the condition of strict monoton-
icity. Extensions to unbounded support are obtained
by Chew (1983) by introducing the following regular-
ity conditions. Take I to be unbounded. Let K; be
an increasing family of compact intervals such that
lim;.. K; = I and let ®x be the restriction of @ to K,
that is, the conditional distribution ®(:|K).

Continuity: If {®;}z, € ®; converges in distri-
bution to ® € ®;, and ® has a compact sup-
port, then M(®) = lim;... M(®)).

Extension: for all ® € @y,

M(®) = limj... M(Dx;).

Alternatively, a stronger sufficient condition is continu-
ity in distribution. See also Coletti and Regoli (1986).

Strict monotonicity is crucial for the representation
to hold. Let S(®) be the support of ®. Then sup.{x €
S(®)} is associative and monotone but not strictly
monotone and does not admit a representation of the
form (6) (see Hardy, Littlewood and Pélya, 1934). Also,
consistency and associativity do not imply monoton-
icity; for a counterexample see Coletti and Regoli (1986).

Both de Finetti’s and Chew’s results are based on
the assumption of g-additivity. We are aware of no
instances in which de Finetti indicates a concern for
developing a theory of means under finite additivity.
This could be explained with the fact that the problem
of means was originally taken from a descriptive stand-
point. Seidenfeld and Schervish (1983) provide further
discussion of issues related to both finite additivity
and extensions from simple to non-simple distributions
in the context of Savage’s theory.

3.3 Invariance Properties and Inequalities

An important area of investigation is the character-
ization of means satisfying invariance conditions. As
mentioned, work in this direction began with Schiapa-
relli (1868). In the context of quasi-linear means, im-
portant contributions were made by Bonferroni (1924,
1926, 1927), Nagumo (1930), Jessen (1931), de Finetti
(1931a) and Hardy, Littlewood and Pélya (1934).

Homogeneity, defined in terms of distribution func-
tions, states that M(®(cx)) = M(®(x))/c, for any @
having support in R* and ¢ # 0. If ¢ > 0, the only
homogeneous means of the form by (6) are obtained
by setting w(x) = ax* + B, with 2 # 0, x > 0 (root-mean
square) and w(x) = a log(x) + B,x > 0 (geometric mean).
Here a > 0. Consequently, the class of root-mean power
and geometric mean is characterized by reflexivity,
strict monotonicity, associativity and homogeneity. As
previously discussed, extensions to unbounded sup-
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port can be obtained on the basis of suitable continuity
conditions. An alternative characterization was given
by Weerahandi and Zidek (1979).

A further condition often investigated is transla-
tivity, that is, M(®(x —c)) = M(®(x)) + ¢, for ®
arbitrary and ¢ € R. The only quasi-linear translative
means are obtained by setting y(x) = ax + S (arithme-
tic mean) or y(x) = a exp(yx) + B (exponential mean).
The only quasi-linear mean satisfying both translati-
vity and homogeneity is the arithmetic mean. This was
known as early as Bemporad (1926).

Cooper (1927), Jessen (1931) and de Finetti (1931a)
compared quasi-linear means obtained using different
functionals on the same probability distribution. Let
Ms;,(®) and Ms,(®) be quasi-linear means with different
functions y; and ws. If w, is increasing (decreasing),
then Ms,(®) = M;5,(®) holds for every @ if and only
if v ° w3! is convex (concave). As an example, take
vi(x) = x™ and ws(x) = x™2, with x > 0 and m; > m..
Then y; ° yz! = x™™2 js convex (concave) if m; is
positive (negative).

4. MEANS, UTILITY AND SUBJECTIVE
PROBABILITY

In the 1920s and 1930s means had an important role
in the controversy over the foundation of probability.
In his very influential treatise, Keynes (1921) refuted
“the doctrine that the mathematical expectations of
alternative courses of actions are the proper measures
of our degrees of preferences” (p. 344). Borel (1924),
Ramsey (1926) and de Finetti (1931b, 1937) rejoined,
albeit in the context of different proposals, that overt
preferences are the only sound way to measure a per-
son’s degree of belief. Both de Finetti and Ramsey
endeavored to construct theories of probability based
on this principle. We briefly review the relations of
these theories to the theory of means.

4.1 Means and Subjective Probability in de Finetti

Consider a decision maker determining the certainty
equivalent of a given probability distribution based on
a functional § of particular interest for the problem.
Suppose also that the decision maker considers it natu-
ral to use an ¥ satisfying D1 and D2. On this, de
Finetti and Emanuelli (1967) wrote:

In the context of comparing preferences, asso-
ciativity (D2) constitutes basically a coherence
condition: operating an indifferent change on a
situation, its preference or indifference relation
with others cannot be changed. This is why we
can conclude, in the case of decisions under uncer-
tainty, that the certainty equivalent to an uncer-
tain situation must be expressed by an associative
mean, and therefore (from the Nagumo-Kolmo-
gorov Theorem) there must exist a suitable in-

creasing function—the utility, for which, to an
uncertain situation there corresponds the previ-
sion (i.e., the mathematical expectation) of the
utilities of the possible situations. (p. 74, our trans-
lation)

We note that the word coherence is plausibly used by
de Finetti in the ordinary language sense, with no
direct reference to coherence of probability assign-
ments.

In de Finetti’s view, the characterization of associa-
tive means amounts to the reduction of the expected
utility principle to more basic axioms about ranking
distribution functions. In the early 1930s, de Finetti
(1931b, 1937) developed an approach to subjective
probability. As is well known, for de Finetti, probabil-
ity is measured by the notion of fair betting odds as
the certainty equivalent of a bet on the outcome of the
event. In this sense, the development of the notion of
probability presents similarities with the functional
approach to means; both are based on a primitive
notion of indifference between certain and uncertain
outcomes, and on a set of rationality requirements. In
Theorem 2, the function y (the utility) is derived with
probability given extraneously. Conversely, in the
definition of subjective probability, probabilities are
derived from basic preferences for a fixed utility func-
tion.

However, de Finetti kept separate the derivation of
probability and utility. In later writings (de Finetti
1952, 1964, 1970; de Finetti and Emanuelli, 1967) he
discussed explicitly the option of deriving both utilities
and probability from a single set of preferences and
seemed to consider it the most appropriate way to
proceed in decision problems, but maintained that the
separation is preferable in general, giving two reasons.

First, the notion of probability, purified from the
factors that affect utility, belongs to a logical level
that I would call “superior.” Second, constructing
the calculus of probability in its entirety requires
vast developments concerning probability alone.
(de Finetti, 1952, p. 698, our translation)

4.2 Ramsey’s Approach as a Representation Theorem

In his 1926 paper, Ramsey laid the foundations of
subjective probability in a different way. He proposed a
scheme encompassing both what will be the functional
approach to means and the Dutch Book argument. In
this section, we review Ramsey’s theory with the intent
of highlighting the similarities with the theory of means.
A discussion in the context of expected utility theory
is in Fishburn (1981). Consider an uncountable set of
outcomes or consequences (worlds in Ramsey’s termi-
nology), designated by a, f and so on. Outcomes are
not monetary nor necessarily numerical, but each out-
come is assumed to carry a value. Outcomes in the
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same equivalence class are indicated by a ~ . The
subject is assumed to have a weak order on outcome
values. Strict preference is indicated by >.

The general strategy of Ramsey is: first, find a neu-
tral proposition with subjective probability of 1/2, then
use this to determine a real-valued utility of outcomes
and finally, use the constructed utility function to
measure subjective probability.

The subject is assumed to be able to make choices
between options of the form: “a if E is true, g if E is
not true.” We indicate such option by Og(a, B), dropping
E when unambiguous. The outcome a and the option
O(a, a) belong to the same equivalence class, a property
only implicitly assumed by Ramsey, but very important
in this context as it represents the equivalent of reflex-
ivity.

In Ramsey’s definition, an ethically neutral proposi-
tion is one whose truth or falsity is not “an object of
desire to the subject.” More precisely, a proposition £
is ethically neutral if two possible worlds differing only
by the truth of E are equally desirable. The existence
of one such proposition is postulated as an axiom
(R1). The notion of ethical neutrality can be read as
Ramsey’s attempt to address what is today known
as the problem of state-dependent utilities. Schervish,
Seidenfeld and Kadane (1990) discuss difficulties with
axiomatic approaches based on preferences (including
Ramsey’s) in providing a satisfactory treatment of con-
ditions like ethical neutrality.

Next Ramsey defines an ethically neutral proposition
with probability 1/2. P(E) = 1/2 if for every pair of
outcomes (a, ), Ola,p) ~ O(B,a). That preferences
among outcomes do not depend on which ethically
neutral proposition with probability 1/2 is chosen is
built into O (axiom R2). There is no loss of generality
in taking P(E) = 1/2: the same construction could
have been performed with a proposition of arbitrary
probability, as long as such probability could be mea-
sured based solely on preferences.

In analysing Ramsey’s construction as a representa-
tion theorem, a fundamental assumption, given as axiom
R6, is that for every pair of outcomes (a, f), there exists
a unique outcome u such that O(a, ) ~ Olu,u). As
O(u, u) ~ u, there is a unique certainty equivalent to
Ola, B). We indicate this by u = M{O(a, f)}.

We now list the remaining axioms:

R2a: If O(a,d) ~ O(B,y) then a > B if and only if
y > 0, and a ~ fif and only if y ~ 4.
R3: The indifference relation between options is tran-

sitive.
R4: If O(a,0) ~ O(B,7) and O(y,{) ~ O3, n), then
Ola, ) ~ O(B, n).

R5: For every a, f, y, there exists a unique outcome
v such that O(a, ) ~ O(v, y)

R7: Continuity.

R8: Axiom of Archimedes.

Ramsey provides little explanation regarding the
last two axioms. Their role is to make the space of
outcomes rich enough to be one-to-one with the reals.
Sahlin (1990) suggests that continuity should be the
analogue of the standard completeness axiom of real
numbers. Then it would read like “every bounded set of
outcomes has a least upper bound.” Here the ordering is
given by preferences.

One may also conjecture that a way of formalizing
the Archimedean axiom in this framework could be
the following. For every a > B > y, there exist u and
v such that O(v, 8) < y and O(u, 8) > a. Debreu (1959)
and Pfanzagl (1959, 1967, 1971) offer a precisely stated
set of axioms to obtain results similar to Ramsey’s.

Axioms R1-R8 give the existence of a real-valued,
one-to-one, utility function on outcomes, designated by
v, such that

(7)  Ola, ) ~ OB, y) & wla) — w(B) = wly) — w(d).

Ramsey never gave a proof. Modified versions of this
result are discussed by Suppes and Winet (1955), Da-
vidson and Suppes (1956), Suppes (1956), Debreu (1959)
and Pfanzagl (1959, 1967, 1971).

According to (7), the individual’s preferences are rep-
resented by a continuous (by virtue of axioms R2a and
R6) and strictly monotone utility function w, deter-
mined up to a positive affine transformation. In particu-
lar, consistent with the principle of expected utility,

Ola, d) ~ OB, y) & yla) -; w(9) _ wip) -;— viy)

Now, let 41 = M{O(a, J)}. From axiom R6 and (7) we
can write: [y(a) + w(d))/2 = w(u), so that

yla) + t//(é)].

M{0(a,3)) = v/“{ :

Thus Ramsey’s theorem characterizes the quasi-linear
form.

We now briefly discuss the relationships between
the axioms of the Nagumo-Kolmogorov characteriza-

" tion and the axioms of Ramsey. Ramsey’s context is

not confined to real-valued outcomes, but, for the pur-
pose of the comparison, we take real-valued outcomes.
Then M{O(a, J)} is also real valued. We have argued
that reflexivity is built on the assumption that ¢ must
be equivalent to “a if E is true, a if E is not true.”
Strict monotonicity follows from R2a by a simple proof
by contradiction. Symmetry follows from axiom R2 by
taking the two ethically neutral propositions £ and
E. Finally, let 4 = M{O(y, 6)}. Then O(y, ) ~ Olu, ).
But then, if E and F are ethically neutral,

@® M{O0gz[OFHa, B), Or(y,9)] }

= M{Oz[Ora, B), Orlu, 1)1 }.

Here we introduce iterated mixing in a way never explic-
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itly suggested by Ramsey. The point of our argument
is that as a, B, y and 0 are arbitrary, (8) amounts to
associativity (with the proviso that » and 2 must be
even integers in this context). Let us now consider
the inverse implications. As we confine attention to
real-valued outcomes, axioms R3, R7 and R8 are auto-
matically satisfied. Axiom R1 is satisfied, as the proba-
bilities are determined at the outset by the dimension
of the function M and by the symmetry property.
Axiom R6 follows from existence of the mean and
reflexivity. Axiom R2 follows from symmetry and R2a
from monotonicity and reflexivity. Axiom R4 can be
deduced from symmetry and associativity. Finally,
axiom R5 follows from continuity and strict monoton-
icity.

The result of (7) must be viewed in the wider context
of the determination of subjective probability, which
is the aim of the representation. Here, however, we
discuss Ramsey’s construction only insofar as it consti-
tutes a characterization result for the use of means of
the quasi-linear form.

4.3 von Neumann and Morgenstern’s Approach
as a Representation Theorem

After Ramsey, a most influential treatment of the
expected utility principle was proposed by von Neu-
mann and Morgenstern (1944). From the point of view
of this discussion, their axiomatic treatment of utility
can also be seen as a representation theorem in which
probability is extraneous. In particular, individuals
express preferences over options—denoted by O. Op-
tions consist, as in Ramsey, of uncertain outcomes,
and have a discrete and finite support. Probabilities
are determined externaily to the problem and do not
have, unlike in Ramsey, a subjective meaning. To bring
out the parallel between the theory of von Neumann
and Morgenstern and that of de Finetti, we report the
axioms in the condensed form of Jensen (1967).

VM1. Ordering: The agent holds a weak ordering <
of options;

VM2. Independence: If O; < 0O,, then for every Os;
and A €(0,1), ’

201+ (1 —2)03 < 20, + (1 — 4)0s

VMS3. Archimedean: If O; < O; < O, there exists A,
and A, in (0, 1) such that

1101+ (1 = 21)03 < O3 < 1201 + (1 — 12)0s.

An agent obeying these axioms is ranking options
according to the expectation of a real-valued utility
function v on rewards, defined uniquely by the prefer-
ences, up to a positive affine transformation. For a
discussion of the meaning of the axioms, see Fishburn
(1981).

As pointed out by de Finetti (1952) (see also Daboni,

1984; Fishburn and Wakker, 1993), there are important
similarities between this representation and the charac-
terization results of Sections 2 and 3. In particular, the
independence axiom parallels associativity. We empha-
size two differences between the two settings: first, the
options of von Neumann and Morgenstern are defined
on completely arbitrary rewards; second, the existence
of a certainty equivalent for every lottery is not postu-
lated, as in Ramsey’s or Nagumo and Kolmogorov's
formulations.

Other axiomatizations of expected utility can also
be reinterpreted in this light. An enumeration is be-
yond the scope of this paper (see Fishburn, 1970, 1982).
We just note that Savage (1954) developed an axiomati-
zation of the expected utility principle in which, as in
Ramsey’s, both probability and utility are based on a
single preference relation. Unlike Ramsey, however,
Savage determines probability first and then builds on
the work of von Neumann and Morgenstern to obtain
utility.

5. MEANS WITH WEIGHT FUNCTION

Quasi-linear means as a model of certainty equiva-
lence have encountered criticism (e.g., Allais, 1953),
and alternative paradigms have been proposed to ac-
count for some of the more prevalent violations. Gener-
alizations of the notion of quasi-linear means can be
traced to contributions of the 1930s and continue to
play a very important role in this endeavour. In partic-
ular, means with a weight function, foreshadowed by
Gini (1938), were later reconsidered from both an axi-
omatic and a functional perspective. In this section,
we introduce means with a weight function and give a
brief summary of some of the results most directly
connected with the characterization problem.

5.1 Gini Means

Differing from both the functional and the axiomatic
approach, Gini (1938) proposed an elaborated family

"of means attempting to provide a comprehensive treat-

ment of the commonly applied procedures. An im-
portant feature of his system is the presence of a
weight function depending on the observation. For
simplicity, we present here only the important special
case of power means with power weight function, given
by

Zz"l—l x§+,>1/r
- 13
PR

This family includes, for example, the power means
(s = 0) and the contraharmonic mean (r = s = 1).
Means given by (9) satisfy internality, reflexivity, ho-
mogeneity and symmetry (Farnsworth and Orr, 1986),
but not associativity. Moreover they are not necessar-
ily monotone in r (Beckenbach, 1950). Martinotti (1939)

9) M(xl,...,x,,)=<
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pointed out that (9), as well as the more general family
given by Gini, can be interpreted as functional means.

5.2 Functional Equations and Characterizations of
Means with Weight Function

Axiomatic treatments of means with a weight func-
tion have been given in the literature on functional
equations. In particular, Bajraktarevic (1958) defined
the quasi-linear mean with weight function to be a
function of M: Ug=; I" = R such that there exists a
continuous strictly monotonic function y: I - R and
a positive valued weight function p: I = R for which

Z?=1P(xi)l//(xi)>
(100 M(x1,...,%.) =y H|{——————
(= =) =V < Z?=1P(xi)

for all n. Here I is any open set. When p(x;) = 1 for
all i, we obtain (3). A characterization of (10) was given
by Pales (1986,1987). The characterizing properties
are:

(i) Reflexivity.

(i) Symmetry.

(iii) For any x < u < v < y in I there are n, m such
that u < M(x, ..., %9y, ..., y) < v, where x
appears n times and y m times.

(iv)] For x1, ..., Xn, Y1, - . . , ¥m, €ach in I,
limM(xl,...,xl,...,x,,,...,xn,yl,.--,ym)
ko

=M(x11-‘-,xn)v
where each x; appears & times.
v) If M(xy, ..., Xny U1, ooy ) < Mlxy, ..., Xn, U1,
...vl)andM(yl,...,ym,ul,...,uk) =
My, ..., Ym, V1, .., V), then
M1, .0y Xy Ulyeney Uky Yisevns Vmy Ulyeroy Up)
sM(xl,...,xn, Ulyeoos Uly Y1seev s Ymy
Uly ooy l)l).

In the axiomatic treatment of information measures,
several important functions, like Shannon entropy and
Rényi entropy can be expressed as special cases of (10).
(See Aczél and Daréczy, 1975.) Also, some measures of
inequality can be derived from (10) (Biirg and Gehrig,
1978).

We conclude the section with a result of Losonczi
(1973), who interprets means with weight functions as
functional means. In particular, the equation

n

Z‘l,p(xi)V(xi,y) =0,
where the right-hand side is continuous and strictly
increasing in y, has a unique internal solution, also
called implicit mean. If in addition, V(x, y) = w(x) —
w(y), then the implicit mean has the form (10). A more
general formulation is also given by Losonczi (1973).
A related concept is that of deviation means, defined

by Daréczy (1972a). See also Dar6czy (1972b), Losonczi
(1973), Daréczy and Péales (1980,1982) and Pales
(1982).

5.3 Means with a Weight Function in Utility Theory

Chew (1983) proposes a generalization of Theorem 2
of de Finetti. He considered the following characteriz-
ing properties. Let ®; denote the space of probability
distributions with mass concentrated in some interval
I €eR.

C1. Reflexivity.

C2. Betweenness: for all ®; and ®; in @;, if M(®;) <
M((I)z), then for all ).1 in (0, 1), M(}.1¢1 +
(1 = A)®2) € (M(Dy), M(D3)).

C3. Substitution-independence: suppose there are
®; ®; and ®; in ®; and A1, A2 in (0, 1) such that
M(®,) = M(®,) # M(®;) and M(1,®;, + (1 —
A1)®@3) = M(A2®2 + (1 — A2)®@3). Then, for every
@, in O, M(L®+ (1 — @) = M(A:D; +
(1 — A2)®y4).

C4. Continuity, as defined in Section 3.

C5. Extension, as defined in Section 3.

TueorREM (Chew). Suppose there exists an M: ®; —>
R. Then M satisfies C1-C5 if and only if there are
continuous functions y (strictly monotone) and a (non-
vanishing except possibly at one endpoint, in which
case ay # 0) on I such that for all ® in @,

1) M@) = W_I<Mx_)>
[tz

Means defined by (11) include quasi-linearity as a
special case, but are not necessarily monotone or asso-
ciative. Monotonicity can be achieved by the further
restriction that a(x)(w(x) — w(s)) is monotone in x for
every s. This fact was used by Chew to provide an
explanation of the Allais Paradox (see Allais, 1953),
without violating either transitivity of preferences or

.consistency with stochastic dominance or between-

ness.

The relationship between associativity and the
axioms of Chew is clarified by the fact that C2 and C3
imply the following: if M(®,) = M(®,), then for every
A1, there is a A; such that for every ®s;, M(A,®; +
(1 = A))®3) = M(A,D2 + (1 — A2)®3). Associativity re-
quires the further restriction that 1, = A,.

An alternative axiomatic characterization relaxing
both the ordering and the quasi-linearity assumptions
was proposed by Fishburn (1986). Consider a function
v(x, y) describing the intensity of the difference in pref-
erence between x and y. Then v represents a gener-
alization of w(x) — w(y) in Ramsey’s (7). Natural
requirements imposed by Fishburn are that v is skew-
symmetric [i.e., v(y, x) = —ulx, y)], strictly increasing
in the first argument and ratio-continuous. The mean
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value of a probability distribution ®@ is defined as the
unique solution of the equation

/v(x,y)d(D(x) =0.

The quasi-linear form is obtained as a special case
when v(x, y) = wlx) — w(y) and the weighted quasi-
linear form is obtained when v(x, y) = (w(x) — wly))-
a(x)a(y). Details of the axiomatization are given in
Fishburn (1986, 1988).

6. CONCLUSIONS

In statistics means are ubiquitous. It was not our
plan to review all interesting interpretations and ap-
plications of means, even within the time period con-
sidered. We thus close by suggesting some further
references. For applications of means to statistical in-
ference, the interested reader can consult Norris (1976),
who devotes special attention to moments and maxi-
mum likelihood estimation. The notion of certainty
equivalent as representative income is relevant in the
measurement of income inequality and social welfare
functions. A concise exposition is Chew (1987), who
also points to connections between rank-dependent
quasi-linear means and L-estimators and between im-
plicit weighted quasi-linear means and robust estima-
tors. For an extensive bibliography on inequalities
among means and relations with inequalities on expec-
tations of random variables see Bullen, Mitrinovic and
Vasic (1988).
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