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Abstract. We generalize the notion of mean value by considering functions of the

form:
M(z1,...,2,) =f1 [Ep;g(z;):l :

i=1
We term these functions quasi-means, and we propose a characterization based on two
associative operations—corresponding respectively to combination of individual coor-
dinates and combinations of aggregate values. We then show that the only homoge-
neous quasi-means are quasi-linear, and discuss a further extension.

1. Introduction
Let M : R* — R, and let x and o be binary operations. The functional equation:

M(zi x Y1,y Tn ¥ Yn) = M(z1,...,%5) o M(y1,...,Yn) 1)

arises when it is desired to compute summary or aggregate quantities, and the
operation which is deemed appropriate for combining individual coordinates does
not necessarily coincides with that deemed appropriate for combining aggregate
values. In this paper we investigate the nature of functions M satisfying (1).

2. A Characterization Result

A binary operation o is associative whenever (z oy) oz = £ o (y o 2), for all
z,y,2 € I where [ is a proper interval of real numbers (closed, open, half open,
finite or infinite). Also, o is cancellative if zoy = zozoryoz = zox imply z = y,
forall z,y,z € I. Aczél (1966, pp. 253 ff., or 1987, pp. 106 ff.) characterizes
the continuous, associative and cancellative operations as those satisfying:

zoy= fTf(2) + f(R], @)

forallz,y € I, where f : I — J is continuous, strictly monotone, and unique
up to a positive affine transformation, and J is one of the real intervals (—o0, o],
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(—00,a), [B,00), (B,00), (—00,00), @ < 0,8 > 0. The operahon o is not
assumed to be symmetric but it is so as a result of (2).
Let f and g be two functions with domain I and range J, of the form described

in the previous paragraph and let;

zxy=g""[g(z)+ g(y)] €))
zoy=fl[f(z)+ f(PI. @)

Theorem 1. The function M : R — R satifies the equation:
M(z1 % Y1,...,Za % Yn) = M(Z1,...,%4) 0 M(y1,---,Yn) ®)

and is continuous at a point or bounded on one side or an interval or on a set of
positive measure, if and only if

M(-Tl)--nzn) = f--l I:Eplg(zi)} (6)
i=1

where f and g are two continuous and strictly monotone functions, generated by
a binary associative operation, and where p; , ..., p, are real constants.

Proof: Substituting (3) and (4) into (5), and defining
FOM(Ey, onz)) = 201, .0 32,
we have:
Z@G " (9(z1) +9(y1)),. ., g‘l(g(zn)+g(yn)))=Z(a:1,...,mn)+Z(y1,--.,ynz&)

Setting g( z;) = u; and g(y;) = v in (7), and defining Z(g~*(-),...,97'(*)) =
H(-,...,-), weobtain:

H(uy + v1,...,8: F Up) SEHEUS 00 08 8 (U5 .. ., V) - ®

By Acz€l (1966, pp. 215-216 and p. 32) the general solution of (8), continuous
at a point or bounded on one side or an interval or on a set of positive measure, is:

H(uy,...,us) =prug + -« + Doty ©)
with p1, ..., p, real constants. Hence the general solution of (5), under the same
regularity conditions, is (6). |

In the remainder of the paper we term functions satisfying (5) quasi-means.
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Example 1: Take zoy = (z™+y™) /™ andzxy = =+ y+ zy. Then f(z) = z™
and g(z) = log(z + 1), z > —1. Therefore the quasi-mean must be:

[E p; 10g(z; + I)J "

i=1

When m = 1, the resulting quasi-mean has found application in the context of the
measurement of welfare (see Tinbergen, 1991).

Example 2: Takezxoy = z+yandz*y = zy. Then f(x) = randg(z) = log:z:
The quasi-mean

M(zy,...,2,) = Epilogmi
i=1

is the celebrated utility function proposed by Daniel Bernoulli (1738). If instead
zxy=(z™+y™ ™ g(zx) = z™ and the quasi-mean is

n
Mxy cxizi)= Ep;:r}"

i=1

with applications in various fields such as mathematical statistics (moments), eco-
nomics (production functions) and social choice theory (aggregation functions).

Example 3: Take z oy = z+ yand 5, p; = 1. Then the quasi-mean is the
expected value of the function g of a random variable taking values z; with prob-
ability p;.

The mapping M : R — R is a quasilinear mean if there exists a continu-
ous strictly monotone function f : R — R and real constants py,...,p, with
> i pi = 1, such that:

n
M(zy,...,3,) = f [}:mwo] (10)
i=1
The following Corollaries are given without proof.
Corollary 1. A characterization of the quasilinear mean (10) is given by:
M(ml oyly"')xﬂoyn) = M(‘Tl)""mn) OM(yly"';yﬂ) (11)

and M(z,...,z,) is reflexive.

Characterizations of quasilinear mean have been given by de Finetti (1931),
Kitagawa (1934) and Aczél (1948).
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Corollary 2. A characterization of the symmelric quasilinear mean:
1 n
M(zi,...,3,) = [;Zf(z.»)}
i=1

isgiven by (11) and M(x1,...,z,) is reflexive and symmetric.

Kolmogorov (1930), Nagumo (1930), de Finetti (1931) and Acz€l (1948) have
given necessary and sufficient conditions for a function M to be a symmetric
quasilinear mean.

Example 4: Let M be symmetric and reflexive, and zxy = zoy. Typical examples
of means that can be characterized by the functional equation (11) are:

Arithmetic mean Toy=xT+yY f(z) ==z
Geometric mean Toy= 1Y f(z)=logz, >0
Harmonic mean zoy=zy/(z+y) f(x)=1/z,z>0

Root-mean-power zoy=(z™+y™/™ f(z)=z™, >0, m#0

This result was previously obtained by Matsumara (1933) for the arithmetic mean
(see also Aczél, 1966, p. 239), and by Nakahara (1936) for the geometric mean.

3. Invariance Properties
Homogeneous quasi-means satisfy:

MAXT 50 o M0 = XM {1500 50} (12)

The following result provides a characterization of homogeneous quasi-means.
Theorem 2. Let M be a quasi-mean, as defined by (6). If M is homogeneous,
then

i) f(z) =g(z);

i) g(z) =az™+B,2>0,m#0 org(z) = alogz+ B,a #0.

Conversely, if f(z) = g(z) = az™+ 3,2 > 0, m # 0, then M is homoge-
neous. :
Proof: From homogeneity,

M [Ep,-g(zoJ = f! [prg<xzf)} (13)
i=1 i=1

with A > 0. Define:
f(x) = fr(x)

9(z;) = u;
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Corol]ary 2. A characterization of the symmetric quasilinear mean:
i~
Wiy ,00) = £ |2 D ()
i=1

is given by (11) and M( T1,...,T,) isreflexive and symmetric.

Kolmogorov (1930), Nagumo (1930), de Finetti (1931) and Aczél ( 1948) have
given necessary and Sufficient conditions for a function M to be a symmetric

Quasilinear mean,
Example4: Let pf be Symmetric and reflexive, and zxy = zoy. Typical examples
of means that can be Characterized by the functional equation (11) are:

Arithmetic mean Hoy=1z+y f(z) =z
Geometric mean Toy=xY f(z)=logz, >0
Harmonjc mean Zoy=qxy/(z+y) f(z)=1/z,2>0
ROOt-mean—power Toy= (g™ + ym)I/m f(x)=z™ >0, m £0

This result wag previously obtained by Matsumara (1933) for the arithmetic mean
(see also Aczél, 1966, p. 239), and by Nakahara (1936) for the geometric mean.

3. Invariance Properties
Homogeneoys quasi-means saisfy:

DTN )z,) = \M{z1, ..., 2,) (12)

The following resul Provides a characterization of homogeneous quasi-means.

Theorem 2. ¢ M be a quasi-mean, as defined by (6). If M is homogeneous,
then

) f(z) = g(z);
ii) 9(3’)=a-’5"‘+ﬂ,m>0,m#0org($)=alog$+ﬂ,a7‘0-

Conversely, if f(z) = 9(z) = az™+ B,z > 0,m # 0, then M is homoge-
neous.

Proof: From homogeneity,
Sk [ZPsg(zf)J =f! {E Pfg(/\zs)J (13)
] i=1

with A > 0, Define:
Jf(Az) = fi(z)

9(z;) = y;
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Since f is strictly monotone, this gives:
n n
A [f“ (Z p,-u,-)J = " pigala™ (w)). (14)
i=1 i=1

Moreover, using the notation:

H\(y) = A (F ()
Zy(u) = gx (g7 (w)),

(13) becomes:

H, [E p.-u,-] = > piZ(w) (15)
i=1 3=1

with u; € g(I) = J. Define W = x%,J € R", and take an arbitrary inner point

('U)Q,...,'UJ()). Write(ul,...,u,,) = (w0+w1,...,w0+wn) with wg + w; € J
Then, (15) becomes:
(3 n n
Hy, [wo > omi+ Epf'w;] =) piZx(wo + w;). (16)
i=1 i=1 i=1
Put now successively wy =0,k=1,...,4— 1,7+ 1,...,n, to obtain:

n
piZx(wo + w;) = Hy, [wozwmw,} —c i=1l,...,n (17

i=1
where c does not depend on the w;. Inserting (17) into (16) and defining:

Dy(y) = H) [WO Ep,-+ y] —-c

i=1

. 1 :
Di(y) = ;Dx(p,-y) i=1l-..n

we obtain:
Dy(wy + -+ wy) = Dy(wi) + - -- + D}(wy), (18)

Following Eichhorn (1978, pp. 33-34), it is possible to determine the solution of
(18), and deduce that g must satisfy an equation like:

g(Az) = a(N) g(z) + b(}).
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It is known (see Hardy, Littlewood and Pélya, 1934, pp. 68) that there exist two
system of solutions to this equation, namely:

g(z)=az™+8,z>0, m#0, a#0
g(z) =alogz+ B, >0, a#0.

To solve for f, let now:
n
My(z1,...,7,) = g~ [Epfg(re)} :
i=1

Defining f~![g(x)] = ¢(z), (13) becomes:

AL My(z1,...,22)] = L M,(\z1, ..., 20)].
Since M, is homogeneous, we have:

A My(z1,...,2,)] = [AMy(z1,...,2,)]

forall (z1,...,z,). Therefore ¢(z) = z and f = g. This concludes the proof. J

Remark: If M is a mean defined by (6), the condition f(z) = g(z) = alog z+ 3,
o # 0 is sufficient to prove homogeneity of M only if 3%, p; = 1. Examples
where 37 | p; # 1 and M is not homogeneous are easily constructed.

Example 5: In the theory of production functions, adopting a quasi-mean instead
of a quasi-linear function relaxes the restriction that inputs and outputs must be
combined according to the same associative operation. However, if homogeneity
is desired, the two operations must be equal, and the form has to be as in Theo-
rem 2. In particular, f(z) = g(z) = =™ implies an ACMS production function:

=X
M{mll"')Iﬂ}=(plxi-m+'..+pn$;m) m

withp; > 0,...,p, > 0 (see Eichhorn, 1978, p. 31). On the other hand, f(z) =
g(z) =logzand ) [, p; = 1 yield a Cobb-Douglas production function:

M{zi,...,z,} = exp{p; log z; + -+ pylog z,}.

The next invariance condition we study is traslativity. Translative quasi-means
obey the condition:

M{zy +1,...,05 + 1} = M{Z1,:s., 3} + 1 (19)

Similarly to homogeneity, we have the following result.
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Theorem 3. A mean satisfying (5) is translative if and only if f(z + c) = g(z)
and: g(z) =az+ B,z >0 org(z) = aexp{yz}+ B, with a # 0,7 # 0.

Proof: Following the same steps as in the Proof of Theorem 2, it is possible to
show that g must satisfy:
g(z + 1) = a(t)g(z) + b(?) (20)

from which the required form follows. Define

My(z1,...,2,) = g7 [Epfg(z;)} :
i=1

Translativity requires:
Sl Mg(z1,..., )]+t = d[Mg(z1 +1,..., 3, + )],
where f~1[g(x)] = ¢(x). Since M, is translative, we have:
Sl My(z1,...,20)] + 1= [ My(z1,...,2,) + t]

forall (zy,...,x,). Therefore ¢(z) = z + ¢, and the theorem is proved. |
The arithmetic mean is then the only homogeneous and translative mean satis-
fying (5).
Example 6: A translative mean with f # g can be obtained by setting z x y =
log(exp{z} + exp{y}), r o y = log(exp{z + c} + exp{y + ¢}) — ¢, so that
g(z) = exp{z} and f(z) = exp{z + c}.
Finally, we remark that two quasi-means M; and M,, with functions fi, g

and f>,g> are equal for all (z,,...,z,) whenever fi(z) = afa(z) + B and
g1(z) = ag2(x) + B. A proof of this statement follows the lines of the proof of

Theorem 2.
4. A Further Extension

A further characterization can be obtained by relaxing the restriction that, in the
functional equation (5), the quasi-mean should be the same.

Theorem 4. The functions M; : R* — R, 1= 1,2, 3 satisfy the equation:

Mi(z1 *y1,...,Tp *Ys) = Ma(Z1,...,Z5) o Ma(y1,...,9m) (21)
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and are continuous at a point or bounded on one side or an interval or on a set of
positive measure, if and only if:

Mi(zy,...,3,) = f~! rfjp.-g(z,-) ta+ b} 22)
[ =1
May(z,...,z,) = £ Pznjp,-g(m,-) + “J (23)
[ i=1
Ms(z,...,2,) = f7 Pipig(zi)+b} (24)
[ i=1
where py ;s p,;, a and b are real constants.

Proof: Substituting (3) and (4) into (21), and defining

f(Mi(z1,...,24)) = Zi(z1,...,3,),
we have:
Zilg7 (921 +9(y1)) -, 97 (9(20) + () )=Z2 (21, o, T )4 23 (Y . .., y)
Setting g(z;) = u;andg(y;) = v; in(25),anddeﬁningZ,-(g“l(-),...,g“1(~)(;2 5=)
H;(-,...,-), we obtain:

Hi(ug +u1,...,u,,+v,,) =H2(u1,...,u,,)+ H3(v1,...,v,,). (26)

By Acz€l (1966, pp. 348) the general solution of (26), continuous at a point or
bounded on one side or an interval or on a set of positive measure, is:

H/1(u1,...,un)=p1u1+-~-+pﬂun+a+b 27

Hy(u1,...,us) = prur+ -+ paus +a (28)

H3(u1,...,us) =prug+ - -+ pauy, + b (29)
with py, ..., p,, a, b real constants. Hence the general solution of (21), under the
same regularity conditions, is (22), (23), (24). |
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