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0. Introduction

A sequence of # random variables (r.v.) is considered, the first  of
which (Xi, ..., X,) are generated by a model M;, while the second
(#—7), (Xrs1,...,Xn) are generated by a model Mz. r is called the
change-point and is assumed to be unknown (0 < r < #). When r = 0
or r = n there is no change, that is all the observations are generated
by the same model (M, if r = 0, M, if r = n).

Recently, increasing interest has been shown in the problem of making
inference about the change-point. Previous nonbayesian works include Page
(1954, 1955, 1957), Gardner (1969), Hinkley (1970, 1972). The classical
nonparamettic approach has been developed by Page (1955), Bhattacharya
and Jonhson (1968), Sen and Srivastava (1973). These authors consider
tests for no change against change and the problem of estimating the
location parameter. Smith (1975), Cobb (1978), Broemeling (1972) con-
sider posterior probabilities for the change-point. Pettit (1981) solves the
same problem using ranks. For the linear model Ferreira (1975), Smith
(1977), Smith and Cook (1980), Chin Choy and Broemeling (1980, 1981)
Guttman and Menzefriche (1982) have given Bayesian results.

The change-point problem can arise in many different situations. For
instance, a production process may be subject to a sudden deterioration in
the quality of the output. A social program (e.g. advertising campaign)
has its effects after an unknown time. In some cases a chemical becomes
abruptly toxic for a biological system. In all these situations we are facing
change-point problems.

We now recall some important applications.

Chin Choy and Broemeling (1981) consider the problem of evaluating
the effectiveness of various materials and methods of apphcatlons for
sealing cracks in flexible pavements.

Smith and Cook (1980) deal with the problem of detecting the re-
jection after a renal transplant.

Carter and Blight (1981) suggest a method for the prediction and
detection ef ovulation in women.

Silvey11958) and Smith (1980) solve a slightly different problem (the
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Lindisfarne Scribes problem): detecting the number of change-points in a

sequence. : ; '

In this study we shall consider two problems:

a) inference about the change-point,
b) inference about the parameters of the models.

Usually the assumption that the two models M; and M are independent
is made. The aim of this work is to solve problem #) whithout a so strict
assumption: the dependence between the models will be expressed through
a hierarchical procedure (section 1). Problem 5) will be solved in the
framework of the exponential family by using some known results about
linear Bayes estimates (section 2). '

An application to the normal model will then be considered (section 3).

A numerical example is finally reported. The subject we deal with is
the one considered by Cobb (1978): the problem of the Nile. A sequence
of data about the annual volume of discharge from the Nile River at Aswan
for the years 1871 to 1970 is examined. The aim is to determine whether
there actually was a change in rainfall regime near the turn of the last.

century.
Cobb assumed the two models M; and M; to be independent, but in

this application the hypothesis of dependence of the two models seems
particularly suitable.

1. Inference about the change-point

We consider a sequence of r.v.’s Xy, Xa, ... X, such that:
P{X;<sx,...X0 < |7, 0,0} =IE_F (x:|0) I, F (x: | 02)
‘ r=1,2,..,7—1
=M"F(x:|0) r=0
=ML F(x:|0) r=n.

If the distribution functions F (-|0) (0 e ®) admit a density f(-|0)
with respect to some dominating measure, the joint density of X1, X, . . .,
X, conditional on r, §; and 0, is given by:

)4 (x;, X2y o o 0y Xn I r, 91, 62) = H,;If (x,- | 91) H?=,+,f (x,- l 92)
W e e B

We indicate as po(r) the prior distribution of r (the unknown
change-point). Obviously: '

o opo(r) = 1. R

When 0; and 0, are known, the posterior distribution of the change-

point is
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P (7| %7, 000,) oc po (r) I, f (i | 81) T, f (x: | 62)

where x™ = (x1, x3, . . ., Xn). |
If » =0, r = #n, we have respectively:
pn (0 %, 81, 85) oc pu (0) IXf (x; ] 8)
pu (1] %, 0, 82) oc po () Ty f (x: | 8y).

The parameters 0, and 8, may be unknown, therefore it is necessary to
assign them a prior density 4 (0;,0,) = 5 (61,0, ). '
The posterior distribution of r is:

pa(r|x™) oc po(r) ffp(x1,.. ) Xn | 7,01, 682) b (0, 0,) 40, d6,.
The posterior density of (0y, 8,), conditional on 7 is:

ha (01,0 | x™, 7) oc p (%1, .. ., % | 7,01, 02) b (05, 02).

By averaging over r we obtain the marginal posterior density:

bu (01,02 | x™) = Z7_3 by (81,0: | 7, x™) p (r | x™).

It is sometimes possible to assume the mechanism generating the data
to change completely in 7, in such a way that, if 7 is known, no information
about the mechanism before the change is useful for the inference about
what happens after the change.

This fact may be represented assuming 8; and 0, independent (see e.g.
Broemeling (1972), Smith (1975)).

It is often unreasonable to make such an assumption.

Indeed, whenever the data (Xi,..., X,) affect the opinion about
(Xr41, - . ., Xu) even if the change point is known to be , it is necessary to
assume 0; and 6, dependent.

We shall consider one way to express dependence between ; and
02: 0; and 0, will be still independent, but only conditionally on a hypet-
parameter A, which will be given a probability density g (A) = g (M| 7)
(see e.g. Lindley and Smith (1972)).

We shall henceforth indicate:

X o (1 o s Ko Kby = W Keids s 5 Kon i

We summarize our assumptions (the symbol || denotes independence)
Xi [ X;104,0, )\ 5] ihi=1,...n

X0 | 6,707

Xnry || 01, M0, 7

01 || 620

0,080 [
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These assumptions imply:
02 || X[ Xuery, A, 7
B || Xvoery [ X9 Kor
XO || Xoury | My
The posterior density of 02, conditional on 7 is:
Ba (82| 27, 7) = [ bu (B2 %™, 7,0) gu (M | ™, 7) dh
As
02 [| X | Xewory, My 7
this result becomes:
ba (0] ™, 7) =  bn (02| X(n=r), 7, N) gn (M | x™, ) dN.
We have:
PN r) g (V)

g (M x™,7) =
Jp (™[N, r)g(h)dr

where
p(x™ |\, r) = fIiof (x| 00) IIE, o f (x| 02) b (81 | M) b (62| X) 401 40
=p PN p (Xn-r) [ Ay 7)
and
p (%un | 8,7, 1) b (82 })
§ b (eury | 8,7, ) B (62| 0) B
Therefore the posterior density of 0,, given 7, is:
b (02 x™, 7) =
S b (82| (ur)y 7, ) p (7 [N, 7) p (%(n-r) [ N, 7) g (M) AN
B £ 2 G [%r) pCxtun [N 7) g O0) |
Another form of (1.2) is
b (82] x™, 7) oc L, of (xi | 62) f b (B2 N) gu (M| %) 4,

brz (62 ‘ X(n—r), ¥, )") =

(1.2)

which separates the role of X(u—,) and X®.
Analogous results have been obtained by Deely and Lindley (1981)

dealing with empirical Bayes problem.
Inference on 0, is based on the posterior marginal density

b (82 ] x™)-= Z0_obn (82] x™, 7) pu (r | x™)
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We see that the posterior distribution of 0, conditional on  is influenc-
ed by all the observations: by X(s_r) through f(x;|0) (i =7 + 1, ..., n),
by X only through the posterior density of the hyperparameter.
Obviously

bn (01| x™, 7) oc TIi_f (x:101) £ b (81| ) gu (M| %cn_ry) dN.

2. Exponential family

Here we deal with the one parameter exponential family, that is with
distribution functions wich admit densities (w.r.t. some dominating measure)
of the form:

a(x)e®
fx[0) = —— (2.1)
c(0)

where
c(0) = fe % a(x)dp(x).

It is well known that

dlog c (0)
EX|O=m@®0) = — ———
‘ a0
dm (0) d* (—log c (0))
V(X[ =— = { }
a0 a6?

When 6, and 0, are known, the posterior probabilities of the change-
point are given by:

C (62) r
P (r |01, 02, x™) oc po (r) exp {rx® (8, — 61)} (
¢ (0)
where
1
¥ = —F_
r

We note that the sufficient statistic for the unknown parameter 7
is the full set X1, X», ..., X» and no reduction is possible.

If the parameters 0, and 8; are unknown and independent we can chose
a natural conjugate prior for them, i.e.

}J (91, 92) e 1) (61) b (62)

where
(c 0y et
b®) = | i=1,2; m>0 (22)
b (ni, Zi) )
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with #;, z such that these distributions are proper (conditions on #; and
z are delineated by Diaconis and Ylvisaker (1979)).
As an immediate consequence of Bayes, theorem we see that:

pr (7] 27 oc o (r) [fe 82420 ¢ (8)] -+
ce~((n-x_y+2) [ (8,)]-(=n+n) 40, 46,
=po(r)b(r+ mx? 4+ 2)b((n—r + m), (n—1) (- + 2).
Bayes’ theorem gives:
[c(@)]~"* =% (21 + Zi 1)

bn (el | x(n), r) i
b(m + r,zu + Zisyxi)

Analogously for 0.

. If we want to estimate 0; (or 0;) and if we choose a squared error
loss function, the Bayes estimate is the expectation of the posterior
distribution. In our case, i.e. when the model belongs to the exponential
family and the prior is conjugate, the posterior expectation for the mean
m (61). is linear:

E{m@®)|x™,r} =ax" + 8 (2.3)

(see Jewell (1974, 1975), Diaconis and Ylvisaker (1979)).
Ericson (1969) has shown that, if (2.3) holds, a and § can be specified
through the first two moments of 7 (81) and X given 6.

*NV (m (81)) + E (m 8)) E (V (X | 8)))
E{m(©)|x™,r} = b (2.4)
V (m ®)) + E (V (X[ 0,)) |

If we assume regularity conditions, it follows that, in our case, (2.4)

may also be written:’

r . m y
x4+ E (m (1)).
m+r m+r

E{m®)[x",r} =

Hence the expectation of the marginal posterior distribution of
m (0y) is:

E {m (0)| «®} = E {E [m (1) | %9, 2]:| ¥}
= 3" JE{m®) ] x™, r}p.(r]|x™). (2.5)

The expression can be interpreted as the expected value of
E{m (8)|x™, 7} under the posterior distribution of 7.
(2.5) can also be written:

E{m@®)|x™} =X x: qi + E (7 (81)) m1 g0
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where

1
D (7 | 6™, i=0,1,...,n

qi = B i
m-+-r

We note that gi_y = ¢, so the Bayes estimate of 0, is a weighted
average of the prior mean and the observations xi,. . ., x, with decreasing
weights. Evidently, the Bayes estimate of 8, will have the same structure,
but the weights of x, ..., x. will be increasing.

We now briefly consider a hierarchical model, as in section one.

Let 5 (8;|\) be the simplest family, indexed by A\, conjugate to
(2.1). Let 0; and 6, be independent given A with densities:

e (c (8;)) ™

h(B: [N = i=1,2
b ()Vly XZ)
where
b (M) = fe=0 (c (8))d0
and

A= (M, M) ~ g (M, N2)

From (1.2), after some simplications, we have:

ha (02| x™,7) oc e~ EL,, 1% (¢ (02))~"". A (0,)
where

e M (c(02) b (M + i xi, M+ 1)
A (62) — ff g ()\.1, )»2) dM dha.
5 (M, \2) ' ' :

It is not possible, in general, to obtain simple formulae for the

Bayes estimates.

3. Application to the normal model

In this section we apply the previous results to the normal model:
We consider a sequence of independent r.v. (given r,0;,0,) such that:

X;Ir,91,92~N(01,0‘2) z'=1,2,...,r
X,~lr,91,02~N(92,0'2) i=r+1,...,n
o? known.

If 8, and 0, are known‘, too, then
1

Dn (7 [ %™, 01, 0,) oc po (r) exp {—— [ (% — 0,) +

2 ¢o?

+ X, (% — 92)2]}
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If 6, and 9, are unknown, independent and normally distributed:
0i]7 ~ N, t2)
07 ~ N (ua, 73)
we obtain the distribution of X™, conditional on r, by integrating over
91 and 92.
Given 7, X" and X(s—,) are independent and
X r ~ N (1, m, )
where
- 1; 'is ghelvector (1, 1,505, 1)
Be=w LAl
and J, is a 7 X r matrix, every element of which is unity.
Analogously
X’(n-r)l r ~ Nm-ry (Lin—r) W2, Z(n_r))
where
B =Pl + wlen
The posterior distribution of 7 is
P (r| %) oc po (r) Ny (1, 11, Z7) Nn—r) (L¢n—r) 12 E(n—r)
The posterior distribution of 8, conditional on 7 is
b (O] 7, %) ~ N (m,, ¢7)

where
— 2:
x") T+ W o’
mr = -
2
T+ 0'2
and
2
110'2
2
= ——
i+ o

The marginal posterior distribution of 0; is obtained by averaging

over r.
If we consider a hierarchical model, no problem arises as long as the

distribution of the hyperparameter is proper.

From
Xilﬁl,ﬂz,oi,r~N(01,0‘2) R— 1,2,...,1’
Xilel)ez)o-z)rNN(BZ,O‘z) i:r+ 1,...,”

el I'[J.,r o~ N(U‘:Tz)
Gz]p.,r~ N(«“’)Tz)
b~ N, ¥)
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By integrating with respect to the parameters i, 0; and © we obtain the
distribution:

X®|r ~N(1nv,X)

where the covariance matrix = has this form:

A B
S lw ¢ 5 2 w %

B’ o
with
A=+ (F+ ],
B= L i

C=lun+ - T+ V) Jnn
Obviously the posterior distribution of 7 is:

Pa(r|x™) oc po(r)exp {—1/2 [(x — 1, V) 27" (x — 1, v)1}
The prior- distibution:of (007 [z 1s

®,0) |7 ~ N(Lv, @ L + 2 ]2)
The posterior distribution is given by Bayes’ theorem

(01,0,) | 7, x™ ~ N (¢, V,)

where

V. ={D. + (I + ¢ D'}

t=VAd+ I+ ¢ ])'1v}

with
4 Pl N
' a? : re2 0
d= D=
(n— 1) X(n-r) 0 (n—r)oc?
Lo 00 T g

If, on the contrary, we assume a diffuse prior for p, then the distri-
bution of X™ |7 does not admit any density w.r.z. Lebesgue measure
In fact the whole probability mass is concentrated on the subspace
Xi=Xo=...X, = X1 =...= X, Anyway, it is possible to com-
pute pn (r | x™) and b (0, 0; | x™, #), by considering the diffuse prior fos
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u as the limit of a proper conjugate prior, when the variance ¢ — + .
In this case we have

. 1
P (7| %) oc po(r) exp { = —[(x—1v)’H(x—1v)] } (3.1)
S )

where (see Appendix)

a- bl ¢
_1 b -a
L c ’d-. e
e °d
with ‘
20—Dn—nrT+n—1)d —2(p—r) =0’
a = b:
FR2r(n—r)T+ nod) 2R2r(n—r) + nod)
_ '
c =
2r(n—r)T +na*
, —2(n—r—Dre+ (n—1)c e PG
d = e =
cRr(n—r)t 4+ nd?) 2Rr(n—r)? + na?)

Now we compute the posterior distribution of the parameters:

bn ('el) 92 l x(n)’ f) ~ N2 (’_’_’_n Cf)

where
( m,r ]
my =
ma,r
A rx 4+ %0 (m—1)%nn) T + x0°
my,r — ma,r —
rv 4+ d (n—r) < + o?
r (n—r)
32(') + E(n—r)
r< + o’ (n—r)a+ 4o
x =
r (n—r)
+
rt + o’ (n—r)w* + o

The Bayes estimate 7z;,, is a weighted average of the partial sample mean
%™ and the total sample mean x. Analogously for ..

(Cll CIZ]
C.=
Cy Cz
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rvt + o 1
Ciy = —-
72 g2 27
(n—r) <2 4+ o? 1
sz= =
2 o? 2
) 1
Cp=Cy=—
; 2 7?

4. Numerical example

We now reconsider a problem examined by Cobb (1978): the annual
volume of the Nile river from 1871 to 1970. Cobb assumes that the
annual volume of discharge at Aswan is normally distributed with mean 0,
and standard deviation ¢, before the unknown change-point and with
mean 0; and standard deviation ¢ after the change-point. He considers all the
parameters (64, 6;, ¢) known, in particular 8; = 1100, 6, = 850, ¢ = 125,
He assumes an uniform prior for r (so do we for all following models).

We weaken Cobb’s hypotheses and assume first 6, and 8, random,
independent and normally distributed, with means respectively pu = 1100,
M2 = 850 and standard deviations Ty = T, = 50. _

We compute the posterior distribution p. (r | x™) of the change-point
and the Bayes estimates for 8 and 8, with quadratic loss function.

We observe that the posterior distribution of r is highly concentrated
on the 28th observation (corresponding to 1898). The probability of this
point is only slightly less than the one obtained in Cobb’s model.

Next we enrich our model with hierarchical structure: we assume
6: and 0; independent, equally and normally distributed given w, with
mean {4 and standard deviation T = 50, Then we assign a noninformative
prior to w. The posterior distribution we obtain for r is not significantly
different from the previous one.

We note that:

a) the first model is a particular case of the second one, and is obtained »
by taking = = 0.

b) The posterior distribution of 7 is rather insensitive with respect to
different assumption about <, 8y, 6, in any of the three models.

c¢) The posterior for r is sensitive to misspecification of ¢ in the sense
that if ¢ is assumed large, it becomes flat. In fact, in our models, o is
considered known, so that the experiment does not affect the opinion
about it. If it is large, even large deviation of the X’s around their
mean are to be considered in the norm and not due to a change in
the model, so that the likelihood doesn't give any evidence of a
change-point in the sequence of observations.
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d) In the postetior distribution of r there are only few 'values, around
the 28th, whose probability is significantly different from zero.

e) The posterior distribution of 6 and 0; may be strongly affected by
the prior assumptions in the usual Bayesian way.

Tab. I - Bayes posterior.

& Cobb's model 8; and 8, independent Hierarchical model
§ 8,=1100 ez=eso 0=125 u,=1100 u2=aso 0=125 =50 | y=975 0=125 +1=50
>

18;3 o.ooéooo 0.060000 0.060001

1894 0.000009 0.000017 0.000046

1895 0.000899 0.001151 0.001832

1896 0.045333 0.047946 0.051043

1897 0.109294 0.110569 0.119760

1898 0.807567 0.796876 0.749449

1899 0.032396 0.036621 0.059787

1900 0.003736 0.005342 0.012949

1901 0.000742 0.001410 0.004660

1902 0.000008 0.000032 0.000212

1903 0.000005 0.000025 0.000190

Tab. II - Bayes estimates.

Parameters 61, 62 independent Hierarchical model
61 3 = 1097,79 91 = 1072,91
6 6 = 85 =
) 2 0,63 92 860,00
Wy = J'xdl“1 (x)
u, = fxsz(x)
Appendix

We show the method for vobtaining matrix H (see 3.1). Matrix
may be inverted by means of the following formula (Rao 1973)
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(D+ EFE)'=D'—D'E(E' D'E + F)'E' D,
We have:

P
= |8-j £
Yy e °8&
with
2(r—1)(n—r) P+ (n—1)P 2+ (r—1) (n—r) T+ (n—1) T2 +-0*
= : CRrin—nNP P +rin—r)<t+nlP® + n1te? + o)
—2n—rPe—P—(n—r)tt— 1 o?
B =
CRrin—n¥ T +r(n—r) < + n¢20‘2+n120'2-{-0")
g g el
Y: : i
CRrin—rPT+r(n—rt+nl?c® + ntiet + o)
2(n—r—1) P + (n— 1)’ + (n—r—1)r<* + (n—1)t?02 4+ o*
8§ =
CRrin—rY P +r(n—r)t + nl?o? + nte? + o)
—2rP P —Pr—r 1t —=nl0?
ot

i CRrin—rVV +r(n—r)t + 1P + ntta’ + o)
By taking the limit we have: '

lim =
Y+ oo

Work performed while the authors were members of CNR-GNAFA.

This paper takes origin from the close collaboration of the authors. However the
first author has written section 1 and 3, the second one sections 2 and 4.
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the computer programs, and Professor S.D. Silvey for some helpful comments on an
earlier version of the paper. However, the authors remain responsible for any errors
and omissions.
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Riassunto

Si considera una successione finita di # variabili aleatorie, le prime r delle quali
sono generate da un modello M;, mentre le seconde (7 — ) sono generate da un modello
M., 1l punto di cambiamento r & incognito.

Si calcola la distribuzione finale del punto di cambiamento nellipotesi di un
modello a struttura gerarchica. Si forniscono le distribuzioni finali e le stime bayesiane
dei parametri dei modelli M, e M, qualora questi appartengano alla famiglia esponen-
ziale. I1 lavoro si conclude con una applicazione al modello normale ed un esempio
numerico.



